Modulhandbuch
Geophysik Bachelor (B.Sc.)
SPO 2015, Änd.-Satzung 2019, Studienstart ab WS 19/20
Wintersemester 2019/20
Stand 02.10.2019
Inhaltsverzeichnis

1. Prolog.pdf

2. Aufbau des Studiengangs

<table>
<thead>
<tr>
<th>2.1. Orientierungsprüfung</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2. Bachelorarbeit</td>
<td>14</td>
</tr>
<tr>
<td>2.3. Berufspraktikum</td>
<td>14</td>
</tr>
<tr>
<td>2.4. Geophysik und Geowissenschaften</td>
<td>14</td>
</tr>
<tr>
<td>2.5. Klassische Experimentalphysik</td>
<td>15</td>
</tr>
<tr>
<td>2.6. Klassische Theoretische Physik</td>
<td>15</td>
</tr>
<tr>
<td>2.7. Moderne Experimentalphysik für Geophysiker</td>
<td>15</td>
</tr>
<tr>
<td>2.8. Programmieren</td>
<td>15</td>
</tr>
<tr>
<td>2.9. Mathematik</td>
<td>15</td>
</tr>
<tr>
<td>2.10. Schwerpunktthochschule</td>
<td>16</td>
</tr>
<tr>
<td>2.10.1. Geowissenschaften</td>
<td>16</td>
</tr>
<tr>
<td>2.10.2. Physikalische Geodynamik und Satellitengeodynamik</td>
<td>16</td>
</tr>
<tr>
<td>2.10.3. Geoinformatik</td>
<td>16</td>
</tr>
<tr>
<td>2.10.4. Ingenieur- und Hydrogeologie</td>
<td>16</td>
</tr>
<tr>
<td>2.11. Wahlfachbereich</td>
<td>17</td>
</tr>
<tr>
<td>2.12. Überfachliche Qualifikationen</td>
<td>17</td>
</tr>
<tr>
<td>2.13. Zusatzeleistungen</td>
<td>17</td>
</tr>
<tr>
<td>2.14. Mastervorzug</td>
<td>17</td>
</tr>
</tbody>
</table>

3. Module

3.1. Allgemeine Geophysik [GEOP B AG] - M-PHYS-101342	18
3.2. Berufspraktikum - M-PHYS-101620	20
3.3. Das geowissenschaftliche Geomorphologische Observatorium bei Schillach - M-PHYS-101870	21
3.4. Einführung in die Hydrogeologie - M-BGU-100594	22
3.5. Einführung in die Ingenieurgeologie - M-BGU-100595	23
3.6. Einführung in die Vulkanologie, benotet - M-PHYS-101866	24
3.7. Einführung in die Vulkanologie, unbenotet - M-PHYS-101944	26
3.9. Erfolgskontrollen - M-PHYS-101989	28
3.10. Experimentelle Geophysik I [GEOP B EG 1] - M-PHYS-105111	29
3.11. Experimentelle Geophysik II [GEOP B EG 2] - M-PHYS-105116	31
3.13. Figur und Schwerkraft der Erde - M-BGU-101796	34
3.15. Geologie - M-BGU-101547	36
3.16. Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet - M-PHYS-101873	38
3.17. Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet - M-PHYS-101953	39
3.18. Geophysikalische Erkundung von Vulkankernen, benotet - M-PHYS-101951	40
3.20. Geophysikalische Tiefenerkundung an Vulkankernen am Beispiel des Vogelsbergs, benotet - M-PHYS-101952	42
3.22. Geophysikalische Überwachung im Tunnelbau - M-PHYS-103141	44
3.23. Geowissenschaften - M-BGU-101999	45
3.24. Historische Seismologie für Gefährdungsabschätzung - M-PHYS-101961	46
3.25. Höhere Mathematik I - M-MATH-101327	47
3.27. Höhere Mathematik III - M-MATH-101329	49
3.28. Induced Seismicity, benotet - M-PHYS-101959	50
3.29. Induced Seismicity, unbenotet - M-PHYS-101878	51
3.30. In-Situ: Seismische Gefährdung im Apennin - M-PHYS-104195	52
3.31. In-Situ: Summer School Bandung: Seismology/Geohazards - M-PHYS-104196	53
3.32. Klassische Experimentalphysik I, Mechanik - M-PHYS-101347	55
3.33. Klassische Experimentalphysik II, Elektrodynamik - M-PHYS-101348	56
3.34. Klassische Experimentalphysik III, Optik und Thermodynamik - M-PHYS-101349	57
3.35. Klassische Theoretische Physik I, Einführung - M-PHYS-101350	59
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.36. Klassische Theoretische Physik II, Mechanik - M-PHYS-101351</td>
</tr>
<tr>
<td>3.37. Klassische Theoretische Physik III, Elektrodynamik - M-PHYS-101352</td>
</tr>
<tr>
<td>3.38. Messverfahren in der physikalischen Vulkanologie, benotet - M-PHYS-101950</td>
</tr>
<tr>
<td>3.40. Mobile GIS / Location Based Services [GEOD-MWGI-2] - M-BGU-101045</td>
</tr>
<tr>
<td>3.41. Moderne Experimentalphysik für Geophysiker und Meteorologen - M-PHYS-101345</td>
</tr>
<tr>
<td>3.42. Modul Bachelorarbeit - M-PHYS-101669</td>
</tr>
<tr>
<td>3.43. Naturgefahren und Risiken - M-PHYS-101833</td>
</tr>
<tr>
<td>3.44. Oberflächenanalyse physikalischer Erkundung von Rohstoffen - M-PHYS-101946</td>
</tr>
<tr>
<td>3.45. Orientierungsprüfung - M-PHYS-100887</td>
</tr>
<tr>
<td>3.46. Physik der Lithosphäre, benotet - M-PHYS-101960</td>
</tr>
<tr>
<td>3.47. Physik der Lithosphäre, unbenotet - M-PHYS-101875</td>
</tr>
<tr>
<td>3.48. Platzaltermodul Wahlpflichtbereich - M-PHYS-103140</td>
</tr>
<tr>
<td>3.49. Programmieren - M-PHYS-101346</td>
</tr>
<tr>
<td>3.50. Rezente Geodynamik [GEOD-MPGF-1] - M-BGU-101030</td>
</tr>
<tr>
<td>3.51. Satellitengeodäsie und Positionsbestimmung mit GNSS - M-BGU-101795</td>
</tr>
<tr>
<td>3.52. Seminar über aktuelle Themen aus der Risikoforschung - M-PHYS-103803</td>
</tr>
<tr>
<td>3.53. Strukturgeologie und Tektonik - M-BGU-101996</td>
</tr>
<tr>
<td>3.54. Überfachliche Qualifikationen - M-PHYS-102348</td>
</tr>
<tr>
<td>3.55. Weitere Leistungen - M-PHYS-102013</td>
</tr>
</tbody>
</table>

4. Teilleistungen

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Bachelorarbeit - T-PHYS-103214</td>
</tr>
<tr>
<td>4.2. Berufspraktikum - T-PHYS-103092</td>
</tr>
<tr>
<td>4.3. Das geowissenschaftliche Gemeinschaftsobservatorium bei Schiltach, Studienleistung - T-PHYS-103569</td>
</tr>
<tr>
<td>4.4. Einführung in die Geophysik I - T-PHYS-102306</td>
</tr>
<tr>
<td>4.5. Einführung in die Geophysik II - T-PHYS-102307</td>
</tr>
<tr>
<td>4.6. Einführung in die Hydrogeologie - T-BGU-101499</td>
</tr>
<tr>
<td>4.7. Einführung in die Ingenieurgeologie - T-BGU-101500</td>
</tr>
<tr>
<td>4.8. Einführung in die praktische Geophysik - T-PHYS-102308</td>
</tr>
<tr>
<td>4.9. Einführung in die Vulkanologie, Prüfung - T-PHYS-103644</td>
</tr>
<tr>
<td>4.10. Einführung in die Vulkanologie, Studienleistung - T-PHYS-103553</td>
</tr>
<tr>
<td>4.11. Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen - T-BGU-101681</td>
</tr>
<tr>
<td>4.13. Endogene Dynamik - T-BGU-101008</td>
</tr>
<tr>
<td>4.15. Fernerkundungsverfahren - T-BGU-103542</td>
</tr>
<tr>
<td>4.16. Fernerkundungsverfahren, Vorleistung - T-BGU-101638</td>
</tr>
<tr>
<td>4.17. Figur und Schwerefeld der Erde - T-BGU-103460</td>
</tr>
<tr>
<td>4.18. Figur und Schwerefeld der Erde, Vorleistung - T-BGU-101643</td>
</tr>
<tr>
<td>4.20. Geländemethoden II - T-BGU-101021</td>
</tr>
<tr>
<td>4.21. Geländeübungen und Exkursionen - T-BGU-101019</td>
</tr>
<tr>
<td>4.22. Geological Hazards and Risk - T-PHYS-103525</td>
</tr>
<tr>
<td>4.23. Geologische Karten und Profile - T-BGU-101010</td>
</tr>
<tr>
<td>4.24. Geologische Kartierübung - T-BGU-101022</td>
</tr>
<tr>
<td>4.25. Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Prüfung - T-PHYS-103674</td>
</tr>
<tr>
<td>4.27. Geophysikalische Erkundung von Vulkanfeldern, Prüfung - T-PHYS-103672</td>
</tr>
<tr>
<td>4.29. Geophysikalische Geländeübungen - T-PHYS-102310</td>
</tr>
<tr>
<td>4.30. Geophysikalische Laborübungen - T-PHYS-102309</td>
</tr>
<tr>
<td>4.31. Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung - T-PHYS-103673</td>
</tr>
<tr>
<td>4.32. Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung - T-PHYS-103571</td>
</tr>
<tr>
<td>4.33. Geophysikalische Überwachung im Tunnelbau, Studienleistung - T-PHYS-106248</td>
</tr>
<tr>
<td>4.34. Historische Seismologie für Gefährdungsabschätzung, Studienleistung - T-PHYS-103679</td>
</tr>
<tr>
<td>4.35. Höhere Mathematik I - T-MATH-102224</td>
</tr>
<tr>
<td>4.36. Höhere Mathematik II - T-MATH-102225</td>
</tr>
<tr>
<td>4.37. Höhere Mathematik III - T-MATH-102226</td>
</tr>
<tr>
<td>Kursaufzählung</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>4.38. Induced Seismicity, Prüfung - T-PHYS-103677</td>
</tr>
<tr>
<td>4.39. Induced Seismicity, Studienleistung - T-PHYS-103575</td>
</tr>
<tr>
<td>4.40. In-Situ: Seismische Gefährdung im Apennin - T-PHYS-108690</td>
</tr>
<tr>
<td>4.41. In-Situ: Summer School Bandung: Seismology/Geohazards - T-PHYS-108691</td>
</tr>
<tr>
<td>4.42. Inversion und Tomographie, Vorleistung - T-PHYS-102332</td>
</tr>
<tr>
<td>4.43. Klassische Experimentalphysik I, Mechanik - T-PHYS-102283</td>
</tr>
<tr>
<td>4.44. Klassische Experimentalphysik I, Mechanik - Vorleistung - T-PHYS-102295</td>
</tr>
<tr>
<td>4.45. Klassische Experimentalphysik II, Elektrodynamik - T-PHYS-102284</td>
</tr>
<tr>
<td>4.46. Klassische Experimentalphysik II, Elektrodynamik - Vorleistung - T-PHYS-102296</td>
</tr>
<tr>
<td>4.47. Klassische Experimentalphysik III, Optik und Thermodynamik - T-PHYS-102285</td>
</tr>
<tr>
<td>4.48. Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung - T-PHYS-102297</td>
</tr>
<tr>
<td>4.49. Klassische Theoretische Physik I, Einführung - T-PHYS-102286</td>
</tr>
<tr>
<td>4.50. Klassische Theoretische Physik I, Einführung - Vorleistung - T-PHYS-102298</td>
</tr>
<tr>
<td>4.51. Klassische Theoretische Physik II, Mechanik - T-PHYS-102287</td>
</tr>
<tr>
<td>4.52. Klassische Theoretische Physik II, Mechanik - Vorleistung - T-PHYS-102299</td>
</tr>
<tr>
<td>4.53. Klassische Theoretische Physik III, Elektrodynamik - T-PHYS-102288</td>
</tr>
<tr>
<td>4.54. Klassische Theoretische Physik III, Elektrodynamik - Vorleistung - T-PHYS-102300</td>
</tr>
<tr>
<td>4.55. Lineare Inversion - T-PHYS-110352</td>
</tr>
<tr>
<td>4.56. Messverfahren in der physikalischen Vulkanologie, Prüfung - T-PHYS-103671</td>
</tr>
<tr>
<td>4.57. Messverfahren in der physikalischen Vulkanologie, Studienleistung - T-PHYS-103570</td>
</tr>
<tr>
<td>4.58. Mobile GIS / Location Based Services - T-BGU-101712</td>
</tr>
<tr>
<td>4.59. Mobile GIS / Location Based Services, Prerequisite - T-BGU-101713</td>
</tr>
<tr>
<td>4.60. Moderne Experimentalphysik für Geophysiker und Meteorologen - T-PHYS-102294</td>
</tr>
<tr>
<td>4.61. Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung - T-PHYS-103205</td>
</tr>
<tr>
<td>4.62. Oberflächennahe geophysikalische Erkundung von Rohstoffen, Studienleistung - T-PHYS-103645</td>
</tr>
<tr>
<td>4.63. Physik der Lithosphäre, Prüfung - T-PHYS-103678</td>
</tr>
<tr>
<td>4.64. Physik der Lithosphäre, Studienleistung - T-PHYS-103574</td>
</tr>
<tr>
<td>4.65. Physik seismischer Messinstrumente, Vorleistung - T-PHYS-102325</td>
</tr>
<tr>
<td>4.66. Platzhalter Mastervorzug 1 - T-PHYS-104084</td>
</tr>
<tr>
<td>4.67. Platzhalter Mastervorzug 11 - T-PHYS-104095</td>
</tr>
<tr>
<td>4.68. Platzhalter Überfachliche Qualifikation 2 LP - benotet - T-PHYS-104645</td>
</tr>
<tr>
<td>4.69. Platzhalter Überfachliche Qualifikation 2 LP - unbenotet - T-PHYS-104647</td>
</tr>
<tr>
<td>4.70. Platzhalter Wahlpflchtbereich 2 LP - benotet - T-PHYS-106240</td>
</tr>
<tr>
<td>4.71. Platzhalter Wahlpflchtbereich 2 LP - unbenotet - T-PHYS-106244</td>
</tr>
<tr>
<td>4.72. Platzhalter Zusatzleistungen 1 - T-PHYS-103860</td>
</tr>
<tr>
<td>4.73. Platzhalter Zusatzleistungen 11 - T-PHYS-103870</td>
</tr>
<tr>
<td>4.74. Positionsbestimmung mit GNSS, Vorleistung - T-BGU-101649</td>
</tr>
<tr>
<td>4.75. Programmieren - T-PHYS-102292</td>
</tr>
<tr>
<td>4.76. Rechner- und Programmnutzung am GPI - T-PHYS-110354</td>
</tr>
<tr>
<td>4.77. Rezente Geodynamik - T-BGU-101771</td>
</tr>
<tr>
<td>4.78. Rezente Geodynamik, Vorleistung - T-BGU-101772</td>
</tr>
<tr>
<td>4.79. Satellitengeodäsie und Positionsbestimmung mit GNSS - T-BGU-103458</td>
</tr>
<tr>
<td>4.80. Satellitengeodäsie, Vorleistung - T-BGU-101652</td>
</tr>
<tr>
<td>4.81. Seismic Modelling, Prerequisite - T-PHYS-108636</td>
</tr>
<tr>
<td>4.82. Seismics, Prerequisite - T-PHYS-109266</td>
</tr>
<tr>
<td>4.83. Seismologische Feldübung - T-PHYS-110353</td>
</tr>
<tr>
<td>4.84. Seismology, Prerequisite - T-PHYS-109267</td>
</tr>
<tr>
<td>4.85. Seminar über aktuelle Themen aus der Risikoforschung - T-PHYS-107673</td>
</tr>
<tr>
<td>4.86. Signalverarbeitung in der Geodäsie, Prüfung - T-BGU-101689</td>
</tr>
<tr>
<td>4.87. Signalverarbeitung in der Geodäsie, Vorleistung - T-BGU-101616</td>
</tr>
<tr>
<td>4.88. Strukturgeologie und Tectonik - T-BGU-103712</td>
</tr>
<tr>
<td>4.89. Theorie seismischer Wellen, Vorleistung - T-PHYS-102330</td>
</tr>
<tr>
<td>4.90. Vermessungskunde für Bauingenieure und Geowissenschaftler (unbenotet) - T-BGU-101683</td>
</tr>
<tr>
<td>4.91. Wissenschaftliches Schreiben - T-PHYS-110598</td>
</tr>
</tbody>
</table>
Einleitung

Das Karlsruher Institut für Technologie (KIT) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studierendenausbildung am Karlsruher Institut für Technologie (KIT) in der Regel der Mastergrad steht. Das Karlsruher Institut für Technologie (KIT) sieht daher die am Karlsruher Institut für Technologie (KIT) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum. Der Bachelorabschluss hat ein eigenständiges berufsqualifizierendes Profil und legt die Grundlagen für den konsekutiven Master-Studiengang „Geophysics“, der am KIT auf englischer Sprache angeboten wird, um der Internationalität des Studienfachs gerecht zu werden. Der Bachelor-Studiengang wird jedoch auf Deutsch angeboten, um die Studierenden an die Fachsprache heranzuführen. Er vermittelt wissenschaftliche Grundlagen, Methodenkompetenz und berufsfeldbezogene Qualifikationen. Das Hauptaugenmerk liegt hierbei auf der Vermittlung eines breit angelegten Grundwissens sowie ersten Erfahrungen mit Verfahren, die in der geophysikalischen Berufspraxis eingesetzt werden. Eine stärkere Profilbildung und Vertiefung sowie eigenständiges wissenschaftliches Arbeiten ist dem Masterstudium vorbehalten.

Als akademischer Grad wird nach der bestandenen Bachelorprüfung ein „Bachelor of Science (B.Sc.)“ durch das Karlsruher Institut für Technologie (KIT) verliehen.

Hier finden Sie die Studien- und Prüfungsordnung (SPO) in der Version von 2015 sowie die Änderungssatzung von 2019, die für alle Studierenden gelten, die ab dem Wintersemester 19/20 mit dem Geophysik-Bachelorstudiengang begonnen haben.

Der Bachelorstudiengang Geophysik am KIT

Entsprechend der Bedeutung physikalischer Konzepte und Arbeitsweisen für die Geophysik, nimmt die Vermittlung physikalischer Grundlagen einen breiten Raum ein. Außerdem werden die Grundlagen angrenzender Geowissenschaften vermittelt. Der Bachelor-Studiengang Geophysik am Karlsruher Institut für Technologie (KIT) vermittelt die Geophysik als vorwiegend physikalische Disziplin mit starken Bezügen zu den anderen Geowissenschaften. Von zentraler Bedeutung ist ebenfalls eine solide Ausbildung in Mathematik sowie in

2 Qualifikationsziele

3 Lehrveranstaltungen

3.1 Geophysik

3.2 Experimentelle und theoretische Physik und Mathematik

3.3 Schwerpunktfach

3.4 Wahlpflichtbereich

Im Wahlpflichtbereich können Veranstaltungen aus dem Studienangebot des Karlsruher Instituts für Technologie (KIT) gewählt und kombiniert werden. Der Umfang der Lehrveranstaltungen muss in der Summe mindestens 13 ECTS-Punkte betragen. Den Studierenden wird empfohlen aus dem Bereich der Geophysik als auch Veranstaltungen aus
den Studiengängen Physik, Angewandte Geowissenschaften, Geodäsie und Geoinformatik, Meteorologie, Bauingenieurwesen, Informatik oder Fremdsprachen zu wählen, wobei Lehrveranstaltungen aus dem Bereich der Geophysik zu bevorzugen sind. Alle Prüfungen und Erfolgskontrollen anderer Art, die sich eine Studentin/ ein Student im Wahlpflichtbereich anrechnen lassen möchte, müssen zuvor vom Prüfungsausschuss genehmigt werden.

Um eine Lehrveranstaltung (LV), benotet oder unbenotet, für den Wahlpflichtbereich anrechnen zu lassen, muss sie individuell anerkannt werden. Es gibt und soll keine feste Liste an Wahlpflichtfächern geben, die statisch im elektronischen Prüfungssystem hinterlegt sind. Daher gilt es das folgende Vorgehen zu beachten:

2. Eine formlose Liste einer einzelnen LV oder mehrerer LVen wird von der Beauftragten des Prüfungsausschusses (Dr. Ellen Gottschämmer) geprüft und unterschrieben. Die formlose Liste können Sie hier herunterladen:

3. Download eines “blauen Zettels“ für jede einzelne LV. Den „blauen Zettel“ erhalten Sie hier:
 https://www.sle.kit.edu/downloads/Sonstige/Pruefungszulassung-Erstversuch.pdf

Empfehlungen im Wahlpflichtbereich

Im Wahlpflichtbereich können Veranstaltungen aus dem Studienangebot des Karlsruher Instituts für Technologie (KIT) gewählt und kombiniert werden. Der Umfang der Lehrveranstaltungen muss in der Summe mindestens 13 Leistungspunkte betragen. Den Studierenden wird empfohlen Veranstaltungen aus den Studiengängen Physik, Angewandte
Geowissenschaften, Geodäsie und Geoinformatik, Meteorologie, Bauingenieurwesen, Informatik oder Fremdsprachen zu wählen.

ab 1./2. Semester:

- Geophysikalische Exkursion zum BFO, 1 CP
- Historische Seismologie für Gefährdungsabschätzung, 1 CP
- Einführung in die Vulkanologie, 4 CPs
- Werkstoffkunde I und II, benotet, 11 CPs
- Praktikum Werkstoffkunde, 3 CPs
- Physikalische Chemie, 8 CPs
- Praktikum Physikalische Chemie, 6 CPs
- Allgemeine Meteorologie, 7 CPs
- Klimatologie, 5 CPs

ab 3./4. Semester:

- Physikalisches Praktikum 1, 6 CPs
- Messverfahren in der physikalischen Vulkanologie, 2 CPs
- Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, 4 CPs
- Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, 6 CPs
- Physik der Lithosphäre, 3 CPs
- Moderne Theoretische Physik 1, je 8 CPs

ab 5./6. Semester (teilweise Mastervorzug, siehe Abschnitt 3.9):

- Rezente Geodynamik 1 und 2, je 2 CPs
- Geological Hazards and Risk, 8 CPs
- Induzierte Seismizität, 5 CPs
- Geophysikalische Erkundung von Vulkanfeldern, 4 CPs
- Physikalisches Praktikum 2, 6 CPs
- Moderne Theoretische Physik 2 oder 3, je 8 CPs
- Synoptik I, 4 CPs
- Synoptik II, 6 CPs
- Mikrometeorologie, 3 CPs
- Strahlung, 2 CPs

Es können auch Lehrveranstaltungen anderer Universitäten anerkannt werden.

3.5 Computerausbildung

Spezifische Rechneranwendung aus den Arbeitsbereichen am Geophysikalischen Institut lernen die Studierenden bereits im Modul Experimentelle Geophysik II kennen.

3.6 Überfachliche Qualifikationen

3.7 Bachelorarbeit

Die Bachelorarbeit kann von Prüfern nach §14 (2) der SPO BA Geophysik vergeben werden und muss innerhalb eines maximalen Zeitraums von 6 Monaten bearbeitet werden (Brutto-Bearbeitungsdauer). Sie kann als Projektarbeit in einer der Arbeitsgruppen der Fakultät oder entsprechenden Gruppen am Karlsruher Institut für Technologie (KIT) ausgeführt werden.

Ferner besteht die Möglichkeit, eine externe Bachelorarbeit außerhalb der Fakultät anzufertigen. Dazu muss ein Betreuer von der Fakultät gefunden werden, der bereit ist die externe Arbeit zu unterstützen und die Zustimmung des Prüfungsausschuss eingeholt werden.

Über die Bachelorarbeit ist eine schriftliche Abhandlung in deutscher oder englischer Sprache zu verfassen. Sowohl der Betreuer als auch der Korreferent erhalten je ein gedrucktes und gebundenes Exemplar der Arbeit. Je ein weiteres ist im Prüfungssekretariat der Fakultät (Prüfungsexemplar, vom Betreuer unterschrieben) und in der Bibliothek des Geophysikalischen Instituts abzugeben.

Die Anmeldung zur Bachelorarbeit erfolgt über ein Formular, das im Prüfungssekretariat der Fakultät für Physik (Frau Müller) hinterlegt wird. Das Formular kann der Studierende auf der Webseite des GPI herunterladen und ausdrucken, in einem der beiden Sekretariate des GPI
Geophysik Bachelor (B.Sc.)
Modulhandbuch mit Stand vom 02.10.2019

3.8 Zusatzleistungen

Im Rahmen der Prüfungsordnung ist es möglich, Zusatzleistungen im Umfang von maximal 20 ECTS-Punkten abzulegen (§12 SPO). Das Ablegen einer Zusatzleistung darf den Fortgang des Bachelorstudiums nicht beeinträchtigen.

3.9 Mastervorzug

4 Anmeldung zu Leistungsüberprüfungen und Fachprüfungen

5 Tabellarisches Modulschema

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (SWS)</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUMME CPs</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 (SWS)</td>
<td>4</td>
</tr>
<tr>
<td>SUMME CPs</td>
<td>16</td>
</tr>
</tbody>
</table>

Geophysik Bachelor (B.Sc.)

Modulhandbuch mit Stand vom 02.10.2019
<table>
<thead>
<tr>
<th>Modul Gebiete der Geowissenschaften</th>
<th>Modul: Geowissenschaften und Profile</th>
<th>Modul: Geologie- und Beschaffenheit der Erde</th>
<th>Modul: Geodatenbanken und Geoinformationsverarbeitung</th>
<th>Modul: Einführung in die GIS-Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
<td>Modul 5: Grundlagen der Geoinformationsverarbeitung</td>
</tr>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
<td>Modul 5: Grundlagen der Geoinformationsverarbeitung</td>
</tr>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
<td>Modul 5: Grundlagen der Geoinformationsverarbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul: Geowissenschaften und Profile</th>
<th>Modul: Geologie- und Beschaffenheit der Erde</th>
<th>Modul: Geodatenbanken und Geoinformationsverarbeitung</th>
<th>Modul: Einführung in die GIS-Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
</tr>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
</tr>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul: Geowissenschaften und Profile</th>
<th>Modul: Geologie- und Beschaffenheit der Erde</th>
<th>Modul: Geodatenbanken und Geoinformationsverarbeitung</th>
<th>Modul: Einführung in die GIS-Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
</tr>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
</tr>
<tr>
<td>Modul 1: Die Erde und ihre Profile</td>
<td>Modul 2: Geologie und Beschaffenheit der Erde</td>
<td>Modul 3: Geodatenbanken und Geoinformationsverarbeitung</td>
<td>Modul 4: Einführung in die GIS-Systeme</td>
</tr>
</tbody>
</table>
2 Aufbau des Studiengangs

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierungsprüfung</td>
<td>12 LP</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>8 LP</td>
</tr>
<tr>
<td>Berufspraktikum</td>
<td>47 LP</td>
</tr>
<tr>
<td>Geophysik und Geowissenschaften</td>
<td>24 LP</td>
</tr>
<tr>
<td>Klassische Experimentalphysik</td>
<td>20 LP</td>
</tr>
<tr>
<td>Moderner Experimentalphysik für Geophysiker</td>
<td>13 LP</td>
</tr>
<tr>
<td>Programmieren</td>
<td>6 LP</td>
</tr>
<tr>
<td>Mathematik</td>
<td>24 LP</td>
</tr>
<tr>
<td>Schwerpunktfach</td>
<td>12 LP</td>
</tr>
<tr>
<td>Wahlpflichtbereich</td>
<td>13 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

Freiwillige Bestandteile

<table>
<thead>
<tr>
<th>Zusatzeleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastervorzug</td>
</tr>
</tbody>
</table>

2.1 Orientierungsprüfung

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100887</td>
</tr>
</tbody>
</table>

2.2 Bachelorarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101669</td>
</tr>
</tbody>
</table>

2.3 Berufspraktikum

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101620</td>
</tr>
</tbody>
</table>

2.4 Geophysik und Geowissenschaften

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101342</td>
</tr>
<tr>
<td>M-BGU-101547</td>
</tr>
<tr>
<td>M-PHYS-105111</td>
</tr>
<tr>
<td>M-PHYS-105116</td>
</tr>
<tr>
<td>2.5 Klassische Experimentalphysik</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Pflichtbestandteile</td>
</tr>
<tr>
<td>M-PHYS-101347 Klassische Experimentalphysik I, Mechanik</td>
</tr>
<tr>
<td>M-PHYS-101348 Klassische Experimentalphysik II, Elektrodynamik</td>
</tr>
<tr>
<td>M-PHYS-101349 Klassische Experimentalphysik III, Optik und Thermodynamik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.6 Klassische Theoretische Physik</th>
<th>Leistungspunkte 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-101350 Klassische Theoretische Physik I, Einführung</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-PHYS-101351 Klassische Theoretische Physik II, Mechanik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-PHYS-101352 Klassische Theoretische Physik III, Elektrodynamik</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.7 Moderne Experimentalphysik für Geophysiker</th>
<th>Leistungspunkte 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-101345 Moderne Experimentalphysik für Geophysiker und Meteorologen</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.8 Programmieren</th>
<th>Leistungspunkte 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-101346 Programmieren</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.9 Mathematik</th>
<th>Leistungspunkte 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td></td>
</tr>
<tr>
<td>M-MATH-101327 Höhere Mathematik I</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-MATH-101328 Höhere Mathematik II</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-MATH-101329 Höhere Mathematik III</td>
<td>4 LP</td>
</tr>
</tbody>
</table>
2.10 Schwerpunktfach

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Schwerpunktfach (1 Bestandteil sowie max. 12 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geowissenschaften</td>
</tr>
<tr>
<td>Physikalische Geodäsie und Satellitengeodäsie</td>
</tr>
<tr>
<td>Geoinformatik</td>
</tr>
<tr>
<td>Ingenieur- und Hydrogeologie</td>
</tr>
</tbody>
</table>

2.10.1 Geowissenschaften

- **Bestandteil von: Schwerpunktfach**
- **Leistungspunkte:** 12

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101995</td>
</tr>
</tbody>
</table>

2.10.2 Physikalische Geodäsie und Satellitengeodäsie

- **Bestandteil von: Schwerpunktfach**
- **Leistungspunkte:** 12

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101795</td>
</tr>
<tr>
<td>M-BGU-101796</td>
</tr>
</tbody>
</table>

2.10.3 Geoinformatik

- **Bestandteil von: Schwerpunktfach**
- **Leistungspunkte:** 12

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101848</td>
</tr>
<tr>
<td>M-BGU-101846</td>
</tr>
<tr>
<td>M-BGU-101045</td>
</tr>
</tbody>
</table>

2.10.4 Ingenieur- und Hydrogeologie

- **Bestandteil von: Schwerpunktfach**
- **Leistungspunkte:** 12

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-100594</td>
</tr>
<tr>
<td>M-BGU-100595</td>
</tr>
<tr>
<td>M-BGU-101994</td>
</tr>
</tbody>
</table>
2.11 Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Wahlpflichtbereich (mind. 13 LP)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101030 Rezente Geodynamik</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101833 Naturgefahren und Risiken</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-PHYS-101866 Einführung in die Vulkanologie, benotet</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101870 Das geowissenschaftliche Gemeinschaftsobservatorium bei Schiltach</td>
<td>1 LP</td>
</tr>
<tr>
<td>M-PHYS-101871 Messverfahren in der physikalischen Vulkanologie, unbenotet</td>
<td>1 LP</td>
</tr>
<tr>
<td>M-PHYS-101872 Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, unbenotet</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-PHYS-101873 Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-PHYS-101874 Geophysikalische Erkundung von Vulkanfeldern, unbenotet</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-PHYS-101875 Physik der Lithosphäre, unbenotet</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-PHYS-101878 Induced Seismicity, unbenotet</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-PHYS-101946 Oberflächennahe geophysikalische Erkundung von Rohstoffen</td>
<td>1 LP</td>
</tr>
<tr>
<td>M-BGU-101996 Strukturgeologie und Tektonik</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101944 Einführung in die Vulkanologie, unbenotet</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-PHYS-101950 Messverfahren in der physikalischen Vulkanologie, benotet</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-PHYS-101951 Geophysikalische Erkundung von Vulkanfeldern, benotet</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101952 Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101953 Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101959 Induced Seismicity, benotet</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-PHYS-101960 Physik der Lithosphäre, benotet</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-PHYS-101961 Historische Seismologie für Gefährdungsabschätzung</td>
<td>1 LP</td>
</tr>
<tr>
<td>M-PHYS-103140 Platzhaltermodul Wahlpflichtbereich</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-PHYS-103141 Geophysikalische Überwachung im Tunnelbau</td>
<td>1 LP</td>
</tr>
<tr>
<td>M-PHYS-103803 Seminar über aktuelle Themen aus der Risikoforschung</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-104195 In-Situ: Seismische Gefährdung im Apennin</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-PHYS-104196 In-Situ: Summer School Bandung: Seismology/Geohazards</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

2.12 Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102348 Überfachliche Qualifikationen</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

2.13 Zusatzleistungen

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Zusatzleistungen (max. 30 LP)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102013 Weitere Leistungen</td>
<td>30 LP</td>
</tr>
</tbody>
</table>

2.14 Mastervorzug

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Mastervorzugsleistungen (max. 30 LP)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101989 Erfolgskontrollen</td>
<td>30 LP</td>
</tr>
</tbody>
</table>
3 Module

3.1 Modul: Allgemeine Geophysik (GEOP B AG) [M-PHYS-101342]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Geophysik und Geowissenschaften

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-PHYS-102306	Einführung in die Geophysik I	4 LP Bohlen
T-PHYS-102307	Einführung in die Geophysik II	4 LP Rietbrock
T-BGU-101683	Vermessungskunde für Bauingenieure und Geowissenschaftler (unbenotet)	4 LP Rösch

Erfolgskontrolle(n)

- Vermessungskunde für Geophysiker: Geprüft wird der Inhalt der Vorlesung und der dazugehörigen Übung in Form einer Studienleistung. Diese kann innerhalb des Semesters wiederholt werden.

Qualifikationsziele

- Einführung in die Geophysik I: Überblick über die Methoden der Angewandten Geophysik, Verständnis der mathematischen und physikalischen Grundlagen, selbständige Bearbeitung einfacher geophysikalischer Probleme
- Einführung in die Geophysik II: Kenntnis der Methoden der Allgemeinen Geophysik, Verständnis der mathematischen und physikalischen Grundlagen, selbständige Bearbeitung einfacher geophysikalischer Probleme
- Vermessungskunde für Geophysiker: Mit grundlegenden Vermessungsmethoden wird gelernt, sich im Gelände georeferenziert zu bewegen.

Zusammensetzung der Modulnote

- Einführung in die Geophysik I: Die schriftliche Prüfung wird benotet.
- Einführung in die Geophysik II: Die schriftliche Prüfung wird benotet.
- Vermessungskunde für Geophysiker: Um einen Schein zu erwerben, muss eine Erfolgskontrolle anderer Art bestanden werden, welche unbenotet ist.

Die Gesamtnote für das Modul Allgemeine Geophysik wird aus den benoteten Teilleistungen gebildet und entsprechend der Leistungspunkte (LP) gewichtet.

Voraussetzungen
keine

Inhalt

- Einführung in die Geophysik I: Einführung, Grundlagen der Seismik, Refraktionsseismische Verfahren, Reflektionsseismische Verfahren, Elektromagnetische Messverfahren, Gleichstrom-Geoelektrik, Gravimetrie, Magnetik
- Vermessungskunde für Geophysiker: Einführung, Erdmessung, Landesvermessung
Anmerkungen
Zum Bestehen des Moduls müssen alle benoteten Prüfungen sowie unbenoteten Erfolgskontrollen anderer Art bestanden sein.

Arbeitsaufwand
ingesamt 360 Stunden, davon entfallen diese wie folgt auf die einzelnen Fächer und Semester.

- Einführung in die Geophysik I: 120 Stunden, davon 45 Stunden Vorlesung, Übung und Klausur (2h) und 75 Stunden Selbststudium; 1. Fachsemester
- Einführung in die Geophysik II: 120 Stunden, davon 45 Stunden Vorlesung, Übung und Klausur (2h) und 75 Stunden Selbststudium; 2. Fachsemester
- Vermessungskunde für Geophysiker: 120 Stunden, davon 40 Stunden Präsenzzeit und Selbststudium, sowie 80 Stunden Übungen; 2. Fachsemester

Lehr- und Lernformen

- Einführung in die Geophysik: 2 SWS; 2 LP; Pflicht
- Übungen zu Einführung in die Geophysik I: 1 SWS; 2 LP; Pflicht
- Einführung in die Geophysik II: 2 SWS; 2 LP; Pflicht
- Übungen zu Einführung in die Geophysik II: 1 SWS; 2 LP; Pflicht
- Vermessungskunde für Geophysiker: Vorlesung: 3 SWS (Vorlesung und Übung); 4 LP; Pflicht
3 Modul: Berufspraktikum [M-PHYS-101620]

Verantwortung: Prof. Dr. Thomas Bohlen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Berufspraktikum

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| Pflichtbestandteil | T-PHYS-103092 | Berufspraktikum | 8 LP | Bohlen |

Erfolgskontrolle(n)

Anfertigung eines Berichts zum Berufspraktikum (Erfolgskontrolle anderer Art). Diese kann jederzeit wiederholt werden.

Qualifikationsziele

Studierende lernen, in Eigenverantwortung mit Firmen zu kommunizieren und ein Praktikum zu organisieren. Sie wenden ihr bisheriges fachliches Wissen praktisch an und vertiefen es oder erlernen ggf. neue wissenschaftliche Kenntnisse. Sie erhalten einen Einblick in und verstehen eine der möglichen beruflichen Tätigkeiten, die für Geophysikerinnen und Geophysiker später in Frage kommen.

Zusammensetzung der Modulnote

Das Modul Berufspraktikum ist unbenotet.

Voraussetzungen

keine

Inhalt

Variabel, je nach Praktikum.

Empfehlungen

Es wird empfohlen das Berufspraktikum im 5. Fachsemester zu absolvieren, jedoch kann dies auch früher oder später im Studienverlauf erfolgen.

Arbeitsaufwand

240 h

Lehr- und Lernformen

Berufspraktikum: 8 LP, Pflicht.
3.3 Modul: Das geowissenschaftliche Gemeinschaftsobservatorium bei Schiltach [M-PHYS-101870]

Verantwortung: Dr. Ellen Gottschämmer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele
Die Studierenden kennen die Aufgaben des Geowissenschaftlichen Gemeinschaftsobservatoriums (BFO), wissen, welche Messgeräte es am BFO gibt und für welche Fragestellung sie verwendet werden. Sie kennen die grundlegenden physikalischen Prinzipien, den Aufbau der Messgeräte. Die Studierenden wissen um die Probleme, die bei der Installation und beim Betrieb dieser Geräte im Gelände auftreten können und können diese beschreiben. Sie verfügen über einfache Kenntnisse der Dateninterpretation von Messdaten, die im BFO aufgezeichnet wurden.

Die Studierenden kennen aktuelle Forschungsergebnisse, die mit Daten des BFO gewonnen wurden und können diese diskutieren. Sie kennen aktuelle und zukünftige Projekte unter Mitarbeit des BFO und können diese einordnen.

Die Studierenden können das neue Wissen schriftlich zusammenfassen, dabei reflektieren und einordnen.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Inhalt
- Aufgaben des Geowissenschaftlichen Gemeinschaftsobservatoriums (BFO)
- Messgeräte am BFO
- Datengewinnung am BFO
- aktuelle Forschungsergebnisse mit Daten des BFO
- aktuelle und zukünftige Projekte unter Mitarbeit des BFO
Modul: Einführung in die Hydrogeologie [M-BGU-100594]

Verantwortung: Prof. Dr. Nico Goldscheider

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Schwerpunktfach / Ingenieur- und Hydrogeologie

Leistungspunkte 5
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

| T-BGU-101499 | Einführung in die Hydrogeologie | 5 LP | Goldscheider |

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul erfolgt gemäß § 4 Abs. 2 SPO B.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung (90 Minuten).

Bei Import in andere Studiengänge erfolgt die Erfolgskontrolle gemäß § 4 Abs. 2 gemäß der jeweilig einschlägigen Prüfungsordnung.

Qualifikationsziele

- Die Studierenden haben ein Grundverständnis der Hydrologie und Hydrogeologie sowie der hydraulischen Prozesse im Untergrund.
- Sie haben quantitatives Verständnis einfacher hydrochemischer Prozesse.
- Sie sammeln praktische Erfahrungen durch Übungen und Anwendungsbeispiele.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Inhalt

- Wasserkreislauf: Beschreibung der Teilvorgänge Niederschlag, Verdunstung, ober- und unterirdischer Abfluss, Prozesscharakteristik, Messtechnik und Berechnungsverfahren, regionale und zeitliche Variation, Übungsaufgaben zu Berechnungsverfahren
- Grundlagen der Hydrochemie
- Wasser in der ungesättigten Zone
- Grundlagen der Wasserbewegung im Untergrund, Grundwasserhydraulik
- Hydrogeologische Karten: Erstellung und Interpretation
- Auswertung von Pumpversuchen nach Dupuit-Thiem
- Grundwassernutzung: Erkundung von Grundwasservorkommen, Erschließung von Grundwasser und Grundwasserschutz, Grundwasserqualität

Arbeitsaufwand

Anwesenheit 60h, Eigenstudium 90h

Literatur

M 3.5 Modul: Einführung in die Ingenieurgeologie [M-BGU-100595]

Verantwortung: Prof. Dr. Philipp Blum
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Schwerpunktfach / Ingenieur- und Hydrogeologie

Leistungspunkte: 5
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-BGU-101500 | Einführung in die Ingenieurgeologie | 5 LP | Blum |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in diesem Modul gemäß § 4 Abs. 2 der SPO B.Sc. Angewandte Geowissenschaften in Form einer schriftlichen Prüfung (60 Minuten), die Prüfung kann gemäß § 6a Elemente mit Antwort-Wahl-Verfahren (Multiple Choice) enthalten.

Bei Import in andere Studiengänge erfolgt die Erfolgskontrolle gemäß den Paragraphen § 4 Abs. 2 und § 6a der jeweilig einschlägigen Prüfungsordnung entsprechend der oben genannten Angaben.

Qualifikationsziele

- Die Studierenden haben grundlegender Kenntnisse der Ingenieurgeologie.
- Sie sammeln praktische Erfahrungen durch Anwendungsbeispiele.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung

Voraussetzungen

Keine

Inhalt

Arbeitsaufwand

Einführung in die Ingenieurgeologie, SLP: 60h Präsenzzeit, 90h Selbststudium incl. Prüfung

Literatur

3.6 Modul: Einführung in die Vulkanologie, benotet [M-PHYS-101866]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 2
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103553</td>
<td>Einführung in die Vulkanologie, Studienleistung</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-PHYS-103644</td>
<td>Einführung in die Vulkanologie, Prüfung</td>
<td>1 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prerequisite (3 ECTS): Active and regular attendance of lecture and practicals, preparation and follow-up of lectures (at home), assignments, presentation of a volcano in a short (10 – 15 minute) talk with slides. Examination (1 ECTS): Scientific essay about the given presentation, approx. 8-10 pages, submitted electronically. The grade of the module results from grade of the scientific essay.

Qualifikationsziele
The Students know and understand the basic concepts of physical volcanology. They are able to classify volcanoes by their tectonic location, can discriminate between different eruption types and describe different volcanic edifices with respect to their tectonic environment. They understand the concept of volcanic hazard and risk and are able to apply it. They can explain the physics of volcanic monitoring methods and know about their advantages and disadvantages. They gained insight into numerical modelling tools and can name several applications. The students understand the impact of volcanic eruptions on climate and know both, presently as well as historically active volcanoes and their prominent eruptions.

The students have gained an overview about active volcanoes and recent eruptions and are able to summarize the main characteristics and scientific achievements about one volcano of their choice in a 10-15 minute talk. They are able to discuss and answer questions related to their subject. They can summarize their research about the volcano of their choice in a scientific essay (8-10 pages).

Zusammensetzung der Modulnote
The grade of the module results from grade of the scientific essay.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101944 - Einführung in die Vulkanologie, unbenotet darf nicht begonnen worden sein.

Inhalt

- Introduction, Overview
- Volcanoes and Plate Tectonics
- Magma and Volcanic Deposits
- Eruption types
- Volcanic Edifices
- Volcanic Hazard and Risk
- Volcano Monitoring
- Volcano Seismology
- Numerical Modelling of Volcanic Products
- Historic Eruptions
- Volcanoes and Climate
Arbeitsaufwand
28 h: Attendance, active participation in lectures and practicals
14 h: Preparation and follow-up of lectures (at home)
18 h: Homework, assignments
30 h: Preparation of presentation
30 h: Scientific essay about given presentation, submitted electronically

Lehr- und Lernformen
4060251 Introduction to Volcanology (V1)
4060252 Exercises to Introduction to Volcanology (U1)

Literatur
Literature will be provided by the lecturer.
3.7 Modul: Einführung in die Vulkanologie, unbenotet [M-PHYS-101944]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte: 3
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 3
Version: 2

Pflichtbestandteile

| T-PHYS-103553 | Einführung in die Vulkanologie, Studienleistung | 3 LP | Gottschämmer |

Erfolgskontrolle(n)
Active and regular attendance of lecture and practicals, presentation of a volcano in a short (10 – 15 minute) talk with slides.

Qualifikationsziele
The students know and understand the basic concepts of physical volcanology. They are able to classify volcanoes by their tectonic location, can discriminate between different eruption types and describe different volcanic edifices with respect to their tectonic environment. They understand the concept of volcanic hazard and risk and are able to apply it. They can explain the physics of volcanic monitoring methods and know about their advantages and disadvantages. They gained insight into numerical modelling tools and can name several applications. The students understand the impact of volcanic eruptions on climate and know both, presently as well as historically active volcanoes and their prominent eruptions.

The students have gained an overview about active volcanoes and recent eruptions and are able to summerize the main characteristics and scientific achievements about one volcano of their choice in a 10-15 minute talk. They are able to discuss and answer questions related to their subject.

Zusammensetzung der Modulnote
The coursework is not graded.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101866 - Einführung in die Vulkanologie, benotet darf nicht begonnen worden sein.

Inhalt
- Introduction, Overview
- Volcanoes and Plate Tectonics
- Magma and Volcanic Deposits
- Eruption types
- Volcanic Edifices
- Volcanic Hazard and Risk
- Volcano Monitoring
- Volcano Seismology
- Numerical Modelling of Volcanic Products
- Historic Eruptions
- Volcanoes and Climate

Lehr- und Lernformen
4060251 Introduction to Volcanology (V1)
4060252 Exercises to Introduction to Volcanology (Ü1)

Literatur
Literature will be provided by the lecturer.
Modul: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (GEOD-GIS) [M-BGU-101846]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Schwerpunktfach / Geoinformatik

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103541</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung</td>
<td>3 LP</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen</td>
<td>3 LP</td>
<td>Rösch, Wursthorn</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Die Studierenden verstehen ferner die grundlegenden Prinzipien eines Geoinformationssystems und sind mit der Definition des Raumbezuges vertraut. Sie sind in der Lage einfache projektbezogene Fragestellungen selbständig zu bearbeiten.

Voraussetzungen

keine

Inhalt

Bezugs- und Koordinatensysteme sowie deren Transformation (z. B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken und SQL); Geodatenmodellierung und Erfassung (z. B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z. B. „Point in Polygon“)

Literatur

3.9 Modul: Erfolgskontrollen [M-PHYS-101989]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Mastervorzug

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Jedes Semester</td>
<td>4 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Besonderheiten zur Wahl
Wahlen in diesem Modul sind genehmigungspflichtig.

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Mastervorzugsleistungen (max. 30 LP)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102325 Physik seismischer Messinstrumente, Vorleistung</td>
<td>0 LP</td>
<td>Forbriger</td>
</tr>
<tr>
<td>T-PHYS-102330 Theorie seismischer Wellen, Vorleistung</td>
<td>0 LP</td>
<td>Bohlen</td>
</tr>
<tr>
<td>T-PHYS-102332 Inversion und Tomographie, Vorleistung</td>
<td>0 LP</td>
<td>Ritter</td>
</tr>
<tr>
<td>T-PHYS-104084 Platzhalter Mastervorzug 1</td>
<td>2 LP</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-104095 Platzhalter Mastervorzug 11</td>
<td>2 LP</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-109266 Seisms, Prerequisite</td>
<td>0 LP</td>
<td>Bohlen</td>
</tr>
<tr>
<td>T-PHYS-109267 Seismology, Prerequisite</td>
<td>0 LP</td>
<td>Rietbrock</td>
</tr>
<tr>
<td>T-PHYS-108636 Seismic Modelling, Prerequisite</td>
<td>0 LP</td>
<td>Bohlen</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
3.10 Modul: Experimentelle Geophysik I (GEOP B EG 1) [M-PHYS-105111]

Verantwortung: Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Geophysik und Geowissenschaften

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102308</td>
<td>Einführung in die praktische Geophysik</td>
<td>1 LP</td>
<td>Ritter</td>
</tr>
<tr>
<td>T-PHYS-102309</td>
<td>Geophysikalische Laborübungen</td>
<td>5 LP</td>
<td>Ritter</td>
</tr>
<tr>
<td>T-PHYS-110598</td>
<td>Wissenschaftliches Schreiben</td>
<td>2 LP</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-PHYS-102310</td>
<td>Geophysikalische Geländeübungen</td>
<td>6 LP</td>
<td>Forbriger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Einführung in die Praktische Geophysik: Geprüft wird der Inhalt der Vorlesung in Form einer Studienleistung. Zum erfolgreichen Bestehen ist die aktive Teilnahme an der Vorlesung erforderlich.
- Geophysikalische Laborübungen: Geprüft wird der Inhalt der Übung in Form einer Erfolgskontrolle anderer Art. Sofern ein Gesamtnotendurchschnitt von 4,0 nicht erreicht wurde, besteht bis 2 Wochen nach Ende der Vorlesungszeit die Gelegenheit zur unaufgeforderten, wiederholten Vorlage der Ausarbeitungen, die in der Einzelbewertung schlechter als 4,0 waren. Nach erneuter Abgabe kann jedoch maximal die Note 4,0 in den jeweils erneut abgegebenen Einzelausarbeitungen erreicht werden. Es besteht die Möglichkeit, Übung innerhalb des darauf folgenden Jahres zu wiederholen.
- Geophysikalische Geländeübungen: Geprüft wird der Inhalt der Übung in Form einer Erfolgskontrolle anderer Art. Sofern ein Gesamtnotendurchschnitt von 4,0 nicht erreicht wurde, besteht bis 2 Wochen nach Ende der Vorlesungszeit die Gelegenheit zur unaufgeforderten, wiederholten Vorlage der Ausarbeitungen, die in der Einzelbewertung schlechter als 4,0 waren. Nach erneuter Abgabe kann jedoch maximal die Note 4,0 in den jeweils erneut abgegebenen Einzelausarbeitungen erreicht werden. Es besteht die Möglichkeit, Übungen innerhalb des darauf folgenden Jahres zu wiederholen.

Qualifikationsziele

In diesem Modul erlangen die Studierenden die Kompetenz, physikalische Eigenschaften des Erdinnern zu messen, zu bewerten und die Ergebnisse (selbst-)kritisch zu formulieren. Die Studierenden lernen den logischen Ablauf der Verfahrenskette:

- Planung einer Messung
- Durchführung einer (geo-)physikalischen Messung
- Aufarbeitung der Messdaten
- Auswertung der Messdaten
- Fehleranalyse der Messdaten
- Dokumentation der Messung, der Auswertung und der Ergebnisse
- Präsentation der Messung, der Auswertung und der Ergebnisse
- Verbesserung der Schreibkompetenz im wissenschaftlichen Kontext, insb. in Bezug auf Versuchsprotokolle und die Bachelorarbeit

Zusammensetzung der Modulnote

- Einführung in die Praktische Geophysik: Die Erfolgskontrolle anderer Art ist unbenotet
- Geophysikalische Laborübungen: Die Erfolgskontrolle anderer Art ist benotet
- Geophysikalische Geländeübungen: Die Erfolgskontrolle anderer Art ist benotet
- Wissenschaftliches Schreiben: Die Erfolgskontrolle anderer Art ist unbenotet

Die Gesamtnote für das Modul Experimentelle Geophysik I wird aus den benoteten Teilleistungen gebildet und entsprechend der Leistungspunkte (LP) gewichtet.

Voraussetzungen
keine

Inhalt

- Einführung in die Praktische Geophysik: Vorlesung mit kleinen Aufgaben zur praktischen Arbeitsweise in der experimentellen Geophysik
- Geophysikalische Laborübungen: Messung und Auswertung von geophysikalischen Größen in Kleinversuchen und Verwendung vorgegebener Daten; Berechnung und Abschätzung von Fehlern und deren Auswirkung auf das Gesamtergebnis, Erstellung von Messdokumentationen in der Form benoteter Versuchsprotokolle
- Geophysikalische Geländeübungen: Messung und Auswertung von geophysikalischen Größen im Gelände; Berechnung und Abschätzung von Fehlern und deren Auswirkung auf das Gesamtergebnis, Erstellung von Messdokumentationen in der Form benoteter Versuchsprotokolle

Empfehlungen
Es werden Grundkenntnisse im Bereich Geophysik empfohlen, wie sie im Modul Allgemeine Geophysik vermittelt werden.
Für die geophysikalischen Geländeübungen werden Kenntnisse empfohlen, wie sie z.B. in den geophysikalischen Laborübungen vermittelt werden.

Anmerkungen
Zum Bestehen des Moduls müssen alle benoteten Prüfungen sowie unbenoteten Erfolgskontrollen anderer Art bestanden sein.

Eine Besonderheit ergibt sich bei der Teilleistung "Wissenschaftliches Schreiben", die vom House of Competence (HoC) angeboten wird:

- Die Anmeldung für diese Teilleistung erfolgt beim HoC. Die Leistungsnachweise werden vom HoC als "unzugeordnete Leistungsnachweise" ins Konto der Studierenden hochgeladen.
- Für jeden Studierenden muss entweder der Studierendenservice oder das Prüfungssekretariat Physik die Zuordnung des Leistungsnachweises auf die Teilleistung vornehmen. Hierzu nehmen Studierende bitte Kontakt mit den genannten Stellen auf.

Arbeitsaufwand
insgesamt 420 Stunden, davon entfallen diese wie folgt auf die einzelnen Fächer und Semester.

- Einführung in die Praktische Geophysik: 30 Stunden Präsenzzeit; 3. Fachsemester
- Geophysikalische Laborübungen: 45 Stunden Präsenzzeit und 105 Stunden Vorbereitung und Protokollerstellung; 3. Fachsemester
- Geophysikalische Geländeübungen: 60 Stunden Präsenzzeit und 120 Stunden Vorbereitung und Protokollstellung; 4. Fachsemester
- Wissenschaftliches Schreiben: 60 Stunden; 3. Fachsemester

Lehr- und Lernformen

- Einführung in die Praktische Geophysik: 1 SWS, 1 LP, Pflicht
- Geophysikalische Laborübungen: 4 SWS, 5 LP, Pflicht
- Geophysikalische Geländeübungen: 4 SWS, 6 LP, Pflicht
- Wissenschaftliches Schreiben: 2 LP, Pflicht
3.11 Modul: Experimentelle Geophysik II (GEOP B EG 2) [M-PHYS-105116]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Geophysik und Geowissenschaften

Leistungspunkte: 13
Turnus: Jedes Sommersemester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101616</td>
<td>Signalverarbeitung in der Geodäsie, Vorleistung</td>
<td>1 LP</td>
<td>Westerhaus</td>
</tr>
<tr>
<td>T-BGU-101689</td>
<td>Signalverarbeitung in der Geodäsie, Prüfung</td>
<td>3 LP</td>
<td>Westerhaus</td>
</tr>
<tr>
<td>T-PHYS-110352</td>
<td>Lineare Inversion</td>
<td>3 LP</td>
<td>Ritter</td>
</tr>
<tr>
<td>T-PHYS-110353</td>
<td>Seismologische Feldübung</td>
<td>3 LP</td>
<td>Rietbrock</td>
</tr>
<tr>
<td>T-PHYS-110354</td>
<td>Rechner- und Programmnutzung am GPI</td>
<td>3 LP</td>
<td>Hertweck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- "Signalverarbeitung in der Geodäsie": Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung.

Qualifikationsziele

Rechner- und Programmnutzung am GPI

Lineare Inversion

Seismologische Feldübung

In dieser Lehrveranstaltung erlangen die Studierenden die Kompetenz, seismologische Messungen zu planen, durchzuführen und die gesammelten Daten auszuwerten. Die Studierenden erlernen die technischen Fähigkeiten mit seismologischen Messungen an der Erdoberfläche Rückschlüsse auf die physikalischen Eigenschaften zu ziehen. Es werden selbstständige seismologische Messungen durchgeführt und die Messdaten am Rechner ausgewertet. Die Studierenden dokumentieren die Resultate schriftlich und tragen die Ergebnisse mündlich vor.

Zusammensetzung der Modulnote

Die Studienleistung "Rechner- und Programmnutzung am GPI" ist unbenotet. Die Teilleistungen "Lineare Inversion" und "Seismologische Feldübung" sind benotet. Die Gesamtnote des Moduls ist das arithmetische Mittel aus den Teilleistungen "Signalverarbeitung in der Geodäsie, Prüfung", "Lineare Inversion" und "Seismologische Feldübung"
Inhalt

Rechner- und Programmnutzung am GPI

- Einführung in Linux
- Shell, Shell-Skripte und Shell-Programmierung
- Matlab bzw. Octave und gnuplot
- Gleitkommazahlen im Computer, Hexadezimalzahlen
- Geophysikalische Dateiformate und Metadaten
- Seismische Datenverarbeitung mit Seismic Unix
- Python, SciPy, NumPy und ObsPy
- Versionsverwaltung git und GitLab
- Grundlagen von make und Makefiles bzw. cmake
- Kartenerstellung mit GMT
- LaTeX und BibTeX sowie ausgewählte Makropakete
- Erstellung von Grafiken mit TikZ
- sed, awk und reguläre Ausdrücke

Lineare Inversion

- Linearer Zusammenhang zw. Daten und Modell
- Aufsetzung von Inversionsgleichungen
- Lösung von linearen Inversionsgleichungen
- Programmierung von Lösungsansätzen

Seismologische Feldübung

- Planung und Durchführung einer seismologischen Messung
- Bestimmung des seismischen Rauschens und dessen Bewertung
- Bestimmung des Untergrundes mit Hilfe von H/V oder Array Verfahren
- Analyse und Darstellung der Daten mit ObsPy und Geopsy
- Programmierung mit Python

Empfehlungen

"Lineare Inversion": Grundkenntnisse in Linux und einer Programmiersprache werden vorausgesetzt

Anmerkungen

Zum Bestehen des Moduls müssen alle Erfolgskontrollen bestanden sein.

Arbeitsaufwand

Der Arbeitsaufwand verteilt sich wie folgt auf die einzelnen Fächer und Semester.

- Rechner- und Programmnutzung am GPI: 90 Stunden; 5. Fachsemester
- Lineare Inversion: 90 Stunden, 5. Fachsemester
- Signalverarbeitung in der Geodäsie: 120 Stunden; 4. Fachsemester
- Seismologische Feldübung: 90 Stunden, 5. Fachsemester

Lehr- und Lernformen

- Rechner- und Programmnutzung am GPI: 2 SWS, 3 LP
- Lineare Inversion: 2SWS, 3 LP
- Seismologische Feldübung: 2SWS, 3 LP
- Signalverarbeitung am GIK: 3 SWS, 4 LP
3.12 Modul: Fernerkundungsverfahren (GEOD-Fernverf) [M-BGU-101848]

Verantwortung: Dr.-Ing. Uwe Weidner

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Schwerpunktfach / Geoinformatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101638</td>
<td>Fernerkundungsverfahren, Vorleistung</td>
<td>1 LP</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-103542</td>
<td>Fernerkundungsverfahren</td>
<td>3 LP</td>
<td>Weidner</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
3.13 Modul: Figur und Schwerefeld der Erde [M-BGU-101796]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Bernhard Heck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>Schwerpunktfach / Physikalische Geodäsie und Satellitengeodäsie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101643</td>
<td>Figur und Schwerefeld der Erde, Vorleistung</td>
</tr>
<tr>
<td>T-BGU-103460</td>
<td>Figur und Schwerefeld der Erde</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.14 Modul: Geländemethoden II [M-BGU-101994]

Verantwortung: Prof. Dr. Agnes Kontny
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Schwerpunktfach / Ingenieur- und Hydrogeologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-101021 | Geländemethoden II | 2 LP Göppert |

Erfolgskontrolle(n)
Erfolgskontrolle in Form einer Studienleistung gemäß §4 Abs. 3 der SPO Bachelor Angewandte Geowissenschaften.

Qualifikationsziele
- Die Studierenden beherrschen einfache hydrogeologische Feldmethoden

Voraussetzungen
Keine

Inhalt
Messung von Quellschüttungen und Abflüssen, Erkennen und Verstehen hydrogeologischer Phänomene im Gelände, Hydrochemie (Vor-Ort-Methoden, Probenahme und einfache Analytik)
3.15 Modul: Geologie [M-BGU-101547]

Verantwortung: apl. Prof. Dr. Kirsten Drüppel
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Geophysik und Geowissenschaften

Leistungspunkte 8 **Turnus** Jährlich **Dauer** 2 Semester **Sprache** Deutsch **Level** 3 **Version** 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101008</td>
<td>Endogene Dynamik</td>
<td>4 LP</td>
<td>Zeh</td>
</tr>
<tr>
<td>T-BGU-101009</td>
<td>Erkennen und Bestimmen von Mineralen und Gesteinen</td>
<td>3 LP</td>
<td>Drüppel</td>
</tr>
<tr>
<td>T-BGU-101019</td>
<td>Geländeübungen und Exkursionen</td>
<td>7 LP</td>
<td>Dozenten</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle in diesem Modul umfasst zwei benotete Leistungsnachweise nach § 4 Abs. 2 gemäß der jeweilig einschlägigen Prüfungsordnung:

Endogene Dynamik (T-BGU-101008): Schriftliche Prüfung, 90 Minuten
Erkennen und Bestimmen von Mineralen und Gesteinen (T-BGU-101009): Mündliche Prüfung, 30 Minuten

Qualifikationsziele

Die Studierenden
- besitzen ein Verständnis der grundlegenden Mechanismen und Prozesse zur Entstehung, Entwicklung und Dynamik der Erde
- erwerben Kenntnisse geologischer Prozesse in Zeit und Raum
- sind in der Lage, die wichtigsten Minerale und Gesteine im Labor und im Gelände zu erkennen, zu beschreiben und ihrem Bildungsbereich zuzuordnen
- können unbekannte Gesteine auf Basis ihrer Gefüge-Eigenschaften und ihrem Mineralbestand einer Gesteinsgruppe und somit einem geologischen Kontext zuordnen
- entwickeln eine Beobachtungsgabe im Gelände und können Gesteinsausflusslias aus unterschiedlichen erdgeschichtlichen Regionen beschreiben und interpretieren
- haben ein Verständnis für den kristallographischen Aufbau sowie die chemischen und physikalischen Eigenschaften von Mineralen
- erlernen durch Übungsblätter und Berichte eigenständiges Arbeiten
- erwerben durch die Übungen zur Mineral- und Gesteinsbestimmung in Kleingruppen Kommunikations- und Teamfähigkeit

Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen

Keine

Inhalt

Das Modul Geologie soll Studierenden grundlegende Kenntnisse in theoretischen und praktischen Ansätzen und Arbeitsweisen der Geologie und Mineralogie vermitteln.

Empfehlungen

Keine

Anmerkungen

Keine
Arbeitsaufwand

1. Präsenzzeit in Vorlesungen und Übungen: 90 h
2. Vor-/Nachbereitung derselben: 99 h
3. Klausurvorbereitung Endogene Dynamik und Präsenz in selbiger: 21 h
4. Mündliche Prüfung Erkennen und Bestimmen von Mineralen und Gesteinen: 15 h
5. Erstellung eines Protokolls in Geologische Gelädenübungen und Exkursionen: 15 h
3.16 Modul: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet [M-PHYS-101873]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte: 6
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103572</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103674</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vorleistung: Bearbeitung von Übungsblättern, Diskussion der Vorträge, Halten eines Vortrags im Gelände
Prüfung: Erstellen eines Kapitels des Exkursionsführers

Qualifikationsziele

Die Studierenden sind in der Lage, selbstorganisiert und lösungsorientiert an einer vorgegebenen konkreten Fragestellung zu arbeiten. Sie können diese überblicken, analysieren, interpretieren und bewerten, schriftlich zusammenfassen und eigene Fragestellungen dazu formulieren. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101953 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet darf nicht begonnen worden sein.

Inhalt

- Einführung in die vulkanischen Minerale und Gesteine
- Einführung in die Geodynamik des Mittelmeerraums
- Gefährdung und Risiko: Definitionen, Beispiele, Vorgehensweisen, Sicherheitsregeln
3.17 Modul: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet [M-PHYS-101953]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte 4
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

| T-PHYS-103572 | Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung | 4 LP | Gottschämmer |

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, Diskussion der Vorträge

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101873 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet darf nicht begonnen worden sein.

Inhalt

- Einführung in die vulkanischen Minerale und Gesteine
- Einführung in die Geodynamik des Mittelmeerraums
- Gefährdung und Risiko: Definitionen, Beispiele, Vorgehensweisen, Sicherheitsregeln
3.18 Modul: Geophysikalische Erkundung von Vulkanfeldern, benotet [M-PHYS-101951]

Verantwortung: Prof. Dr. Joachim Ritter
Erichrung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103573</td>
<td>Geophysikalische Erkundung von Vulkanfeldern, Studienleistung</td>
<td>3 LP</td>
<td>Ritter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103672</td>
<td>Geophysikalische Erkundung von Vulkanfeldern, Prüfung</td>
<td>1 LP</td>
<td>Ritter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Vorleistung: Bearbeitung von Übungsblättern, aktive Teilnahme und Diskussion.
Prüfung: Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele

Die Studierenden können mathematische Probleme aus dem Bereich der Druck-Temperatur-Verteilung im Erdinnern, der Gesteinsphysik und der Schmelzbildung unter Einbeziehung einfacher Programmieraufgaben lösen, die Ergebnisse grafisch darstellen, zusammenfassen und interpretieren.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.
Bewertet wird: Bearbeitung von Übungsblättern, Schriftliche Anfertigung eines Reflexionsberichts.

Voraussetzungen

siehe untergeordnete Teilleistung

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101874 - Geophysikalische Erkundung von Vulkanfeldern, unbenotet darf nicht begonnen worden sein.

Inhalt

- Gesteinsphysik
- Geophysikalische Verfahren in Anwendungsbeispielen
- Geophysikalische Erkundung der Vulkanfelder in der Eifel
- Schmelzbildung
- Problemstellungen aus den oben genannten Bereichen: Rechnerübungen
3.19 Modul: Geophysikalische Erkundung von Vulkanfeldern, unbenotet [M-PHYS-101874]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103573 | Geophysikalische Erkundung von Vulkanfeldern, Studienleistung | 3 LP | Ritter |

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, aktive Teilnahme und Diskussion

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modillierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101951 - Geophysikalische Erkundung von Vulkanfeldern, benotet darf nicht begonnen worden sein.

Inhalt

- Gesteinsphysik
- Geophysikalische Verfahren in Anwendungsbeispielen
- Geophysikalische Erkundung der Vulkanfelder in der Eifel
- Schmelzbildung
3.20 Modul: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet [M-PHYS-101952]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103571</td>
<td>Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung</td>
<td>3 LP</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-PHYS-103673</td>
<td>Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung</td>
<td>1 LP</td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vorleistung: Bearbeitung von Übungsblättern, Präsentation eines eigenen Posters, Erstellung eines Skriptabschnitts, schriftliche Anfertigung eines Reflexionsberichts, Halten eines Vortrags im Gelände
Prüfung: Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele
Die Studierenden kennen unterschiedliche Methoden, um Vulkane geophysikalisch in der Tiefe zu erkunden. Insbesondere verfügen sie über ein fundiertes Wissen im Bereich der Bohrlochmoden im vulkanischen Umfeld.
Die Studierenden verstehen die Geschichte des Vulkanismus in einem miozänen Vulkankomplex, können dessen Entstehung wiedergeben und einordnen und mit den Ergebnissen geophysikalischer Untersuchungen verknüpfen. Im Gelände können sie die Strukturen des miozänen Vulkankomplexes erkennen und mit den Ergebnissen der geophysikalischen Untersuchungen, insbesondere denen der Forschungsbohrungen am Vogelsberg sowie den in den Bohrungen durchgeführten Experimenten, analysieren und interpretieren.
Die Studierenden können sich in einfache Themen und Problemstellungen einarbeiten, diese überblicken, analysieren, interpretieren und bewerten. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.
Bewertet wird: Schriftliche Anfertigung eines Reflexionsberichts.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101872 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, unbenotet darf nicht begonnen worden sein.

Inhalt

- Methoden der geophysikalischen Tiefenerkundung an Vulkanen
- Physikalische Bohrlochmessungen am Vulkan
- Aufbau eines miozänen Vulkankomplexes
- Geotope im Vogelsberg
3.21 Modul: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, unbenotet [M-PHYS-101872]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103571 | Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung | 3 LP | Gottschämmer |

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, Präsentation eines eigenen Posters, Erstellung eines Skriptabschnitts, schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele
Die Studierenden kennen unterschiedliche Methoden, um Vulkane geophysikalisch in der Tiefe zu erkunden. Insbesondere verfügen sie über ein fundiertes Wissen im Bereich der Bohrlochmethoden im vulkanischen Umfeld.

Die Studierenden verstehen die Geschichte des Vulkanismus in einem miozänen Vulkankomplex, können dessen Entstehung wiedergeben und einordnen und mit den Ergebnissen geophysikalischer Untersuchungen verknüpfen. Im Gelände können sie die Strukturen des miozänen Vulkankomplexes erkennen und mit den Ergebnissen der geophysikalischen Untersuchungen, insbesondere denen der Forschungsbohrungen am Vogelsberg sowie den in den Bohrungen durchgeführten Experimenten, analysieren und interpretieren.

Die Studierenden sind in der Lage, fachliche Diskussionen mit Kommilitonen zu führen und deren Standpunkt kritisch zu hinterfragen.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101952 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet darf nicht begonnen worden sein.

Inhalt

- Methoden der geophysikalischen Tiefenerkundung an Vulkanen
- Physikalische Bohrlochmessungen am Vulkan
- Aufbau eines miozänen Vulkankomplexes
- Geotope im Vogelsberg
3.22 Modul: Geophysikalische Überwachung im Tunnelbau [M-PHYS-103141]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106248 | Geophysikalische Überwachung im Tunnelbau, Studienleistung | 1 LP | Gottschämmer |

Erfolgskontrolle(n)
Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele
Die Studierenden kennen geophysikalische Messmethoden, mit denen ein Tunnelbau überwacht werden kann. Sie können die seismischen Daten, die dabei an der Erdoberfläche oder im Tunnel aufgezeichnet werden, verstehen und interpretieren. Sie kennen DIN-Normen und können diese auf die Daten anwenden. Die Studierenden kennen Beispiele, in denen ein Tunnelbau mit geophysikalischen Methoden überwacht wurde. Sie wissen auch, wo die Grenzen geophysikalischer Überwachung im Tunnelbau liegen.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Inhalt
- Grundlagen der geophysikalischen Überwachung beim Tunnelbau
- Ziele der Überwachung mit geophysikalischen Methoden
- DIN-Normen
- Seismische Überwachung während des Tunnelvortriebs und Interpretation der Daten
- Vorauserkundung mit seismischen Methoden
- Fallbeispiele: Gotthardbasisstunnel, Tunnel der U-Strab in Karlsruhe, Tunnel beim Bau von S21

Lehr- und Lernformen
4060263 (V1) Geophysikalische Überwachung im Tunnelbau
3.23 Modul: Geowissenschaften [M-BGU-101995]

Verantwortung: Prof. Dr. Agnes Kontny
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Schwerpunkt fach / Geowissenschaften

Leistungspunkte: 10
Turnus: Unregelmäßiger
Sprache: Deutsch
Level: 3
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101022 Geologische Kartierübung</td>
<td>4 LP Kontny</td>
</tr>
<tr>
<td>T-BGU-101010 Geologische Karten und Profile</td>
<td>4 LP Haas Nüesch</td>
</tr>
<tr>
<td>T-BGU-101020 Geländemethoden I</td>
<td>2 LP Hilgers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgskontrolle in Form einer schriftlichen Prüfung gemäß §4 Abs. 2 der jeweilig einschlägigen Prüfungsordnung zur Teilleistung "Geologische Karten und Profile" (T-BGU-101010) sowie einer Prüfungsleistung anderer Art gemäß §4 Abs. 2 der jeweilig einschlägigen Prüfungsordnung zur Teilleistung "Geologische Kartierübung" (T-BGU-101022).
Die Erfolgskontrolle zu Geländemethoden I (T-BGU-10120) erfolgt in Form einer Studienleistung gemäß §4 Abs. 3 der jeweilig einschlägigen Prüfungsordnung.

Qualifikationsziele
• Die Studierenden haben Kenntnis und Erfahrung mit geologischen Geländemethoden, besonders zur Erstellung von geologischen Karten und Profilen in Teamarbeit
• Sie sind in der Lage, eine Berichtes über die im Gelände erarbeiteten Ergebnisse zu erstellen
• Sie haben ein Grundverständnis für die Geometrie und Interpretation von einfachen geolog. Strukturen

Voraussetzungen
Keine

Inhalt
• Geländemethoden (3 Tage im Gelände und Nachbearbeitung)
• Kartierung (7 Tage im Gelände und Nachbereitung)
• Einführung in die Geometrie u in die Methoden zur Interpretation von einfachen geologischen Strukturen (Diskordanzen, Störungen, Falten) und ihre Darstellung in Karten und Profilen

Literatur

eine aktuelle Liste wird den Studierenden in der Lehrveranstaltung ausgehändigt
3.24 Modul: Historische Seismologie für Gefährdungsabschätzung [M-PHYS-101961]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103679 | Historische Seismologie für Gefährdungsabschätzung, Studienleistung | 1 LP | Gottschämmer |

Erfolgskontrolle(n)
Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele
Die Studierenden kennen grundlegende Konzepte der Seismologie und deren historischen Anfänge. Sie wissen um die Bedeutung der seismischen Gefährdungsabschätzung und verfügen über die Kompetenz, die historische Seismologie in Bezug zur seismischen Gefährdungsabschätzung einzuordnen. Sie kennen seismische Messgeräte und deren historische Entwicklung, verstehen die physikalischen Prinzipien, auf denen die Messungen beruhen und deren theoretischen Grundlagen. Sie verstehen bedeutende seismologische Beiträge und Entdeckungen.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Inhalt

- Einführung in die Seismologie
- Anfänge der Seismologie
- Historische bedeutende Erdbeben
- Bedeutung historischer seismologischer Belege für Gefährdungsabschätzung
- Entwicklung seismischer Messgeräte und deren theoretische Grundlagen
- Bedeutende seismologische Beiträge und Entdeckungen
3.25 Modul: Höhere Mathematik I [M-MATH-101327]

Verantwortung: Prof. Dr. Dirk Hundertmark

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-102224 | Höhere Mathematik I | 10 LP | Anapolitanos, Hundertmark, Kunstmann, Lamm, Schmoeger |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Qualifikationsziele

Die Studierenden können:

- mit reellen und komplexen Zahlen rechnen, sowie grundlegende Funktionen und ihre Eigenschaften reproduzieren und erläutern,
- mit den üblichen Methoden Folgen und Reihen auf Konvergenz untersuchen und Grenzwerte berechnen,
- grundlegende Techniken der Differential- und Integralrechnung einer Veränderlichen benennen, erläutern und anwenden,
- Funktionenfolgen auf verschiedene Konvergenzarten untersuchen,
- die Grundzüge der linearen Algebra erläutern, auf einfache Aufgaben anwenden und lineare Gleichungssysteme lösen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Inhalt

Arbeitsaufwand

Gesamter Arbeitsaufwand: 300 Stunden

Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 180 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
3.26 Modul: Höhere Mathematik II [M-MATH-101328]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik

Leistungspunkte: 10
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102225</th>
<th>Höhere Mathematik II</th>
<th>10 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anapolitanos, Hundertmark, Kunstmann, Lamm, Schmoeger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Qualifikationsziele
Die Studierenden können:

- Eigenwerte und Eigenvektoren berechnen, sowie Matrizen diagonalisieren,
- die wichtigen Sätze der mehrdimensionalen Differentialrechnung benennen, erläutern und anwenden,
- Volumen- und Oberflächenintegrale berechnen,
- Integralsätze benennen und anwenden,
- Rechenregeln der Fouriertransformation benennen, erläutern und anwenden.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
Skalarprodukt und Orthogonalität, Determinanten, Kreuzprodukt, Eigenwerte, Diagonalisierung von Matrizen, Jordan-Normalform;
partielle und totale Ableitungen, Umkehrsatz, implizit definierte Funktionen, Satz von Taylor, Extremwertaufgaben mit und ohne Nebenbedingungen, Vektoranalysis, Volumenintegrale, Kurvenintegrale, Oberflächenintegrale, Integralsätze;
holomorphe Funktionen, Cauchyscher Integralsatz, Cauchy-Formel, Laurententwicklung, Residuensatz, konforme Abbildungen; Fourierreihen, Fouriertransformation, Fourierinversionsformel, Satz von Plancherel, Faltung.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 300 Stunden
Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 180 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
3.27 Modul: Höhere Mathematik III [M-MATH-101329]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102226</th>
<th>Höhere Mathematik III</th>
<th>4 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anapolitanos, Hundertmark, Kunstmann, Lamm</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Qualifikationsziele
Die Studierenden können:

- elementare gewöhnliche Differentialgleichungen explizit lösen,
- Sätze zur Existenz und Eindeutigkeit bei Differentialgleichungssystemen benennen und an Beispielen erläutern,
- Lösungen für homogene und inhomogene lineare Systeme berechnen,
- einfache partielle Differentialgleichungen explizit lösen,

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
3.28 Modul: Induced Seismicity, benotet [M-PHYS-101959]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103575 | Induced Seismicity, Studienleistung | 3 LP | Ritter |
| T-PHYS-103677 | Induced Seismicity, Prüfung | 2 LP | Ritter |

Erfolgskontrolle(n)
The grading procedure will be announced during the lectures.

Qualifikationsziele
Die Studierenden kennen die Grundlagen induzierter Seismizität, verstehen deren Ursachen und können Möglichkeiten des Auftretens benennen und vergleichen. Sie haben grundlegende Kenntnisse im Bereich der rechtlichen Aspekte im Zusammenhang mit induzierter Seismizität erworben und können die induzierte Seismizität an Staudämmen, im Bergbau und im Zusammenhang mit Geothermie analysieren, unterscheiden und beurteilen.

Die Studierenden kennen Regionen im In- und Ausland, in denen induzierte Seismizität auftritt und können im Gelände Strukturen erkennen, die auf das mögliche Auftreten induzierter Seismizität hinweisen.

Die Studierenden sind in der Lage, selbstorganisiert und lösungsorientiert an einer vorgegebenen konkreten Fragestellung aus dem Bereich der induzierten Seismizität zu arbeiten und Fachliteratur zu verstehen. Sie können die Fragestellung überblicken, analysieren, interpretieren und bewerten. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen. Sie können die Inhalte dieser Untersuchungen schriftlich zusammenfassen, dabei reflektieren und einordnen.

Zusammensetzung der Modulnote
The grading procedure will be announced during the lectures.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101878 - Induced Seismicity, unbenotet darf nicht begonnen worden sein.

Inhalt
- Grundlagen: Induzierte Seismizität
- Ursachen induzierter Seismizität
- Rechtliche Aspekte
- Fallbeispiele: Staudämme, Geothermie, Bergbau

Arbeitsaufwand
Total workload: 150 h, further details will be given in the lecture.
3.29 Modul: Induced Seismicity, unbenotet [M-PHYS-101878]

Verantwortung: Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Level</td>
<td>3</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103575 | Induced Seismicity, Studienleistung | 3 LP |

Erfolgskontrolle(n)

Literaturstudium, aktive Teilnahme und Diskussion

Qualifikationsziele

Die Studierenden kennen die Grundlagen induzierter Seismizität, verstehen deren Ursachen und können Möglichkeiten des Auftretens benennen und vergleichen. Sie haben grundlegende Kenntnisse im Bereich der rechtlichen Aspekte im Zusammenhang mit induzierter Seismizität erworben und können die induzierte Seismizität an Staudämmen, im Bergbau und im Zusammenhang mit Geothermie analysieren, unterscheiden und beurteilen.

Die Studierenden kennen Regionen im In- und Ausland, in denen induzierte Seismizität auftritt und können im Gelände Strukturen erkennen, die auf das mögliche Auftreten induzierter Seismizität hinweisen.

Zusammensetzung der Modulnote

Die Studienleistung ist unbenotet.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101959 - Induced Seismicity, benotet darf nicht begonnen worden sein.

Inhalt

- Grundlagen: Induzierte Seismizität
- Ursachen induzierter Seismizität
- Rechtliche Aspekte
- Fallbeispiele: Staudämme, Geothermie, Bergbau

Arbeitsaufwand

Total workload: 90 h.

3.30 Modul: In-Situ: Seismische Gefährdung im Apennin [M-PHYS-104195]

Verantwortung: Dr. Ellen Gottschämmer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-108690 | In-Situ: Seismische Gefährdung im Apennin | 6 LP | Gottschämmer |

Erfolgskontrolle(n)

Studierende fertigen eine schriftliche Arbeit an und bearbeiten Übungsblätter. Die Note setzt sich anteilig aus allen diesen Abgaben zusammen.

Qualifikationsziele

Die Studierenden verstehen die Geodynamik des Mittelmeerraums und die tektonische Situation in Mittelitalien. Sie haben grundlegendes Wissen über seismische Gefährdung erworben und können das Konzept der seismischen Gefährdung erklären und auf die Region des Apennin anwenden. Sie können geeignete seismische Messmethoden für die Überwachung einer Region benennen, erläutern und unter Anleitung selbst durchführen.

Zusammensetzung der Modulnote

Studierende fertigen eine schriftliche Arbeit an und bearbeiten Übungsblätter. Die Note setzt sich anteilig aus allen diesen Abgaben zusammen.

Voraussetzungen

siehe untergeordnete Teilleistung

Inhalt

- Geodynamik des Mittelmeerraums
- Tektonische Situation in Mittelitalien
- Seismische Gefährdung, auch speziell im Apennin
- Seismische Überwachung
- Praktische Übungen im Gelände
3.31 Modul: In-Situ: Summer School Bandung: Seismology/Geohazards [M-PHYS-104196]

Verantwortung: Dr. Ellen Gottschämmer
Prof. Dr. Andreas Rietbrock

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-108691 | In-Situ: Summer School Bandung: Seismology/Geohazards | 6 LP | Gottschämmer, Rietbrock |

Erfolgskontrolle(n)

The students receive a scientific paper to discuss in an international group of students regarding one of the above topics. They give a presentation about the paper (20 minutes plus 10 minutes of discussion) and write a summary (5-10 pages). The summary has to be handed in individually by every student two weeks after the end of the summer school and will be graded.

Qualifikationsziele

The students know about the geology and tectonics of Indonesia and surrounding regions. They understand the processes and stress distributions that led to the formation of the Indonesian archipelago and know methods to model those.

The students can explain how earthquakes sources are represented and know about the distribution and characteristics of earthquakes. They understand the concept of seismic sources and stresses and can explain basic concepts of earthquake geology. They are familiar with seismic data acquisition systems and seismic array techniques. They understand the idea behind seismic tomography methods and know applications on global as well as regional and local scale.

The students understand the concepts of physical volcanology and can name the processes that are responsible for volcanic hazard and risk. They know methods of volcano seismology, can explain several modeling techniques and know about monitoring volcanoes at observatories using different geophysical techniques.

The students know about tsunami and flooding hazard and understand basic concepts of disaster management. The students understand basic concepts of geothermal energy and its exploitation.

Voraussetzungen

keine
Inhalt
Geology and Tectonics
 • Geological Setting of Indonesia
 • Visit to the Geological Museum, Bandung
 • Introduction to Stress Modeling in Active Tectonic
Seismology, Seismic Hazard
 • Introduction to Geohazards: Earthquake Hazard and Risk
 • Distribution and Characteristic of Earthquakes
 • Seismic sources and stresses
 • Earthquake Geology
 • Data acquisition and arrays
 • Seismic Travel Time Tomography: Regional and Global Scale
 • Local Earthquake Tomography
 • Passive and active seismic imaging by seismic wave propagation modeling
Volcanology, Volcanic Hazard
 • Physical Volcanology
 • Volcanic hazard risk and assessment
 • Volcano Seismology
 • Modeling of Volcanic Products
 • Visit of Guntur Volcano Observatory
 • Visit to Tangkuban Parahu Volcano
 • Visit to Center of Volcanology and Geological Hazard Mitigation
Tsunamis and Flooding Hazard
 • Tsunamis: Generation, Inundation and Propagation
 • Tsunamis: Hazard, Inundation and Warning
 • Flood Hazard
Introduction to Disaster Management
Geothermal Systems
 • Introduction to Geothermal system & Geology of Kamojang Field
 • Visit of Kamojang

Arbeitsaufwand
Total workload: 180 h, further details will be given in the lecture.
3.32 Modul: Klassische Experimentalphysik I, Mechanik [M-PHYS-101347]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

| T-PHYS-102295 | Klassische Experimentalphysik I, Mechanik - Vorleistung | 0 LP | Müller |
| T-PHYS-102283 | Klassische Experimentalphysik I, Mechanik | 8 LP | Müller |

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der klassischen Mechanik, Hydromechanik und speziellen Relativitätstheorie und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Spezielle Relativitätstheorie: Michelson-Morley-Experiment, Bewegte Bezugsysteme, Lorentztransformation, Relativistische Effekte, Longitudinaler und transversaler Dopplereffekt, Relativistische Mechanik, kinetische Energie.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Lehr- und Lernformen
Klassische Experimentalphysik I, Mechanik: Vorlesung, 4 SWS; Übungen zu Klassische Experimentalphysik I, Übung: 2 SWS

Literatur
Lehrbücher der klassischen Mechanik
3.33 Modul: Klassische Experimentalphysik II, Elektrodynamik [M-PHYS-101348]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102296</td>
<td>Klassische Experimentalphysik II, Elektrodynamik - Vorleistung</td>
<td>0 LP Wegener</td>
</tr>
<tr>
<td>T-PHYS-102284</td>
<td>Klassische Experimentalphysik II, Elektrodynamik</td>
<td>7 LP Wegener</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematische Beschreibung auf dem Gebiet der klassischen Elektrodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Arbeitsaufwand
210 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

Lehr- und Lernformen
Klassische Experimentalphysik II, Elektrodynamik: Vorlesung, 3 SWS; Übungen zu Klassische Experimentalphysik II: Übung, 2 SWS

Literatur
Lehrbücher der klassischen Elektrodynamik
3.34 Modul: Klassische Experimentalphysik III, Optik und Thermodynamik [M-PHYS-101349]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102297</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung</td>
<td>0 LP Wegener</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102285</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik</td>
<td>9 LP Wegener</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der Optik und klassischen Thermodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Optik:

- Einführung: Beschreibung von Lichtfeldern, Überlagerung ebener Wellen, Kohärenz, Lichtausbreitung in Materie (optische Konstanten, Dispersion und Absorption, Polarisation, Gruppengeschwindigkeit)
- Wellenoptik: Huygens-Fresnelsches Prinzip, Beugung, Interferenz (Zweifach- / Vielfachinterferenzen, Spalt, Lochblende, Doppelspalt, Gitter, Interferometer, Auflösungsvermögen, Holographie), Polarisation (Fresnelsche Formeln), Doppelbrechung, Optische Aktivität, Streuung (Rayleigh, Thomson, Mie)
- Photonen: Eigenschaften des Photons, Strahlungsgesetze, Nichtlineare Optik

Thermodynamik:

- Kinetische Gastheorie: Druck, Wärmeleitfähigkeit, Maxwell'sche Geschwindigkeitsverteilung, Transportphänomene (freie Weglänge, Wärmeleitung, innere Reibung, Diffusion).

Arbeitsaufwand
270 Stunden bestehend aus Präsenzzeiten (105), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (165)

Lehr- und Lernformen
Klassische Experimentalphysik III, Optik und Thermodynamik: Vorlesung 5 SWS;
Übungen zu Klassische Experimentalphysik III, Optik und Thermodynamik: Übung 2 SWS
Literatur
Lehrbücher der Optik und Thermodynamik
Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Theoretische Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102298</td>
<td>Klassische Theoretische Physik I, Einführung - Vorleistung</td>
</tr>
<tr>
<td>T-PHYS-102286</td>
<td>Klassische Theoretische Physik I, Einführung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Die Studentinnen und Studenten können einfache mechanische Probleme analysieren und haben die Fähigkeit, diese mit grundlegenden mathematischen Konzepten zu lösen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Mathematische Hilfsmittel: Differential- und Integralrechnung, Einfache Differentialgleichungen, Potenzreihen, Komplexe Zahlen, Vektoren, Gradient, Linienintegral, Delta-Distribution

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

Lehr- und Lernformen
Klassische Theoretische Physik I, Einführung: Vorlesung, 2 SWS;
Übungen zu Klassische Theoretische Physik I, Einführung: Übung, 2 SWS

Literatur
Lehrbücher der klassischen theoretischen Mechanik
3.36 Modul: Klassische Theoretische Physik II, Mechanik [M-PHYS-101351]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Theoretische Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102299</td>
<td>Klassische Theoretische Physik II, Mechanik - Vorleistung</td>
<td>0 LP</td>
<td>Melnikov</td>
</tr>
<tr>
<td>T-PHYS-102287</td>
<td>Klassische Theoretische Physik II, Mechanik</td>
<td>6 LP</td>
<td>Melnikov</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele

Die Studentinnen und Studenten können die Konzepte der analytischen Mechanik auf mechanische Systeme anwenden. Sie sind in der Lage, die Lagrange-Funktion eines mechanischen Systems herzuleiten und können daraus die Bewegungsgleichungen ausrechnen. Die Studierenden haben außerdem die Fähigkeit, die Hamiltonschen Bewegungsgleichungen aufzustellen.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen

keine

Inhalt

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

Lehr- und Lernformen

Klassische Theoretische Physik II, Mechanik: Vorlesung, 2 SWS; Übungen zu Klassische Theoretischen Physik II, Mechanik: Übung, 2 SWS

Literatur

Lehrbücher der klassischen theoretischen Mechanik
3 Modul: Klassische Theoretische Physik III, Elektrodynamik [M-PHYS-101352]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Theoretische Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Klassische Theoretische Physik III, Elektrodynamik - Vorleistung</th>
<th>0 LP</th>
<th>Rockstuhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102300</td>
<td>Klassische Theoretische Physik III, Elektrodynamik</td>
<td>8 LP</td>
<td>Rockstuhl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Die Studentinnen und Studenten erlernen den Umgang mit elektrischen und magnetischen Feldern und können die elektrischen und magnetischen Eigenschaften der Materie analysieren. Sie sind in der Lage, die Maxwell-Gleichungen für einfache Fälle zu lösen. Außerdem können Sie die Maxwell-Gleichungen Lorentz-kovariant darstellen. Die Studentinnen und Studenten können aus den Maxwell-Gleichungen die Wellengleichung für die Potentiale herleiten und diese lösen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt
Einführung und Überblick: Grundbegriffe, Maxwellgleichungen, Kontinuitätsgleichung.
Elektrostatik: Grundgleichungen, skalares Potential, Beispiele, Elektrostatische Energie, Randwertprobleme, Multipolentwicklungen, Ladungsverteilung im äußeren Feld.
Magnetostatik: Grundgleichungen, Vektorpotential, Beispiele, Lokalisierte Stromverteilung, magnetisches Moment, Stromverteilung im äußeren Feld.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Lehr- und Lernformen
Klassische Theoretische Physik III, Elektrodynamik: Vorlesung, 4 SWS;
Übungen zu Klassische Theoretische Physik III, Elektrodynamik: Übung, 2 SWS

Literatur
Lehrbücher der Elektrodynamik
3.38 Modul: Messverfahren in der physikalischen Vulkanologie, benotet [M-PHYS-101950]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messverfahren in der physikalischen Vulkanologie, Studienleistung</td>
<td>1 LP</td>
<td>Gottschämmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messverfahren in der physikalischen Vulkanologie, Prüfung</td>
<td>1 LP</td>
<td>Gottschämmer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Vorleistung: Literaturstudium, aktive Teilnahme und Diskussion

Erfolgskontrolle in Form einer mündlichen Prüfungsleistung.

Qualifikationsziele

Die Studierenden kennen physikalische Messverfahren, die verwendet werden, um aktive und potentiell aktive Vulkane zu überwachen. Sie können diese einordnen und können Messverfahren, die verwendet werden, um Ausbruchsmechanismen zu verstehen und den Aufbau aktiver und inaktiver Vulkane zu analysieren von jenen unterscheiden, die bevorzugt für die Überwachung aktiven Vulkane verwendet werden. Die Studierenden verstehen die physikalischen Prinzipien, die den Messungen zugrunde liegen, können die Physik, die benötigt wird, erläutern und vergleichen. Die Studierenden können nach Fachliteratur recherchieren und auch fachlich anspruchsvolle Literatur in den Grundzügen verstehen und wiedergeben. Die Studierenden können das Wissen über die Messverfahren verknüpfen und auf eine unbekannte Fragestellung anwenden.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der mündlichen Prüfung bestimmt.

Voraussetzungen

Siehe untergeordnete Teilleistung

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101871 - Messverfahren in der physikalischen Vulkanologie, unbenotet darf nicht begonnen worden sein.

Inhalt

- Einführung in physikalische Messverfahren an Vulkannen
- Messung seismischer Signale
- Messung von Infraschall
- Messung der Temperatur
- Methode des Dopplerradar
- Deformationsmessungen
- Gasmessungen
- Elektrische und magnetische Methoden
3.39 Modul: Messverfahren in der physikalischen Vulkanologie, unbenotet [M-PHYS-101871]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
1 | Unregelmäßig | 1 Semester | Deutsch | 3 | 1 |

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103570</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Literaturstudium, aktive Teilnahme und Diskussion

Qualifikationsziele
Die Studierenden kennen physikalische Messverfahren, die verwendet werden, um aktive und potentiell aktive Vulkane zu überwachen. Sie können diese einordnen und können Messverfahren, die verwendet werden, um Ausbruchsmechanismen zu verstehen und den Aufbau aktiver und inaktiver Vulkane zu analysieren von jenen unterscheiden, die bevorzugt für die Überwachung aktiven Vulkane verwendet werden. Die Studierenden verstehen die physikalischen Prinzipien, die den Messungen zugrunde liegen, können die Physik, die benötigt wird, erläutern und vergleichen. Die Studierenden können nach Fachliteratur recherchieren und auch fachlich anspruchsvolle Literatur in den Grundzügen verstehen und wiedergeben.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101950 - Messverfahren in der physikalischen Vulkanologie, benotet darf nicht begonnen worden sein.

Inhalt
- Einführung in physikalische Messverfahren an Vulkannen
- Messung seismischer Signale
- Messung von Infraschall
- Messung der Temperatur
- Methode des Dopplerradar
- Deformationsmessungen
- Gasmessungen
- Elektrische und magnetische Methoden
Modul: Mobile GIS / Location Based Services (GEOD-MWGI-2) [M-BGU-101045]

Verantwortung: Prof. Dr. Martin Breunig
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Schwerpunktfach / Geoinformatik

Leistungspunkte 3 Turnus Einmalig Level 3 Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101713</td>
<td>Mobile GIS / Location Based Services, Prerequisite</td>
<td>2 LP</td>
<td>Butwilowski</td>
</tr>
<tr>
<td>T-BGU-101712</td>
<td>Mobile GIS / Location Based Services</td>
<td>1 LP</td>
<td>Breunig</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.41 Modul: Moderne Experimentalphysik für Geophysiker und Meteorologen [M-PHYS-101345]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Moderne Experimentalphysik für Geophysiker

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103205</td>
<td>Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung</td>
<td>0 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102294</td>
<td>Moderne Experimentalphysik für Geophysiker und Meteorologen</td>
<td>8 LP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistungen

Qualifikationsziele
Die Studentinnen und Studenten erkennen die Probleme der klassischen Physik, Schlüsselfexperimente der modernen Physik zu beschreiben. Sie erlangen die grundlegenden Fähigkeiten zur mathematischen Behandlung einfacher quantenmechanischer Systeme und erwerben das notwendige Faktenwissen zur Beschreibung des Mikrokosmos. Sie verstehen die Bedeutung dieser Grundlagen für Teilgebiete der modernen Physik und können sie auf konkrete Fragestellungen anwenden.

Zusammensetzung der Modulnote
Die Modulnote wird aus der Note der schriftlichen Abschlussprüfung bestimmt.

Voraussetzungen
keine

Inhalt
- Einführung in den Mikrokosmos
- Spezielle Relativitätstheorie
- Einführung in die Quantenphysik
- Atomphysik
- Festkörperphysik
- Kernphysik
- Teilchenphysik

Arbeitsaufwand
240 Stunden / Semester

Lehr- und Lernformen
4012141 Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen
4012142 Übungen zu Moderne Physik für Geophysiker, Meteorologen und Ingenieurpädagogen
3.42 Modul: Modul Bachelorarbeit [M-PHYS-101669]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Bachelorarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103214 | Bachelorarbeit | 12 LP | Bohlen |

Erfolgskontrolle(n)

Anfertigung einer Bachelorarbeit sowie erfolgreiches Präsentieren der Arbeit in einem Arbeitsgruppenseminar.

Qualifikationsziele

Voraussetzungen

- Der/die Studierende befindet sich in der Regel im 3. Studienjahr
- Modulprüfungen im Umfang von 100 LP aus folgenden Fächern wurden erfolgreich abgelegt:
 1. Geophysik und Geowissenschaften
 2. Klassische Experimentalphysik
 3. Klassische Theoretische Physik
 4. Moderne Experimentalphysik für Geophysiker
 5. Programmieren
 6. Mathematik
 7. Schwerpunktfach

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

- In den folgenden Bereichen müssen in Summe mindestens 100 Leistungspunkte erbracht werden:
 - Geophysik und Geowissenschaften
 - Klassische Experimentalphysik
 - Klassische Theoretische Physik
 - Mathematik
 - Moderne Experimentalphysik für Geophysiker
 - Programmieren
 - Schwerpunktfach

Inhalt

Variabel, je nach Thema der Bachelorarbeit.

Arbeitsaufwand

360 h
Qualifikationsziele
The students understand basic concepts of hazard and risk. They can explain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. They have fundamental knowledge of risk reduction and risk management. They know methods of risk modelling and are able to apply them.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.
Bewertet werden: Übungsblätter, schriftliche Projektarbeit.

Voraussetzungen
keine

Inhalt
- Earthquake Hazards
 - Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
 - Induced seismicity
 - Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration, hazard maps
 - Earthquake statistics
 - Liquefaction
- Tsunami Hazards
- Landslide Hazards
- Hazards from Sinkholes
- Volcanic Hazards
 - Short introduction to physical volcanology
 - Types of volcanic hazards
- The Concept of Risk, Damage and Loss
- Data Analysis and the use of GIS in Risk analysis
- Risk Modelling - Scenario Analysis
- Risk Reduction and Risk Management
- Analysis Feedback and Prospects in the Risk Modelling Industry

Lehr- und Lernformen
4060121 Geological Hazards and Risk (V2)
4060122 Übungen zu Geological Hazards and Risk (Ü2)
3.44 Modul: Oberflächennahe geophysikalische Erkundung von Rohstoffen [M-PHYS-101946]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte: 1
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Lehrstunde</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103645 Oberflächennahe geophysikalische Erkundung von Rohstoffen, Studienleistung</td>
<td>1 LP</td>
<td>1 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Inhalt

- Geophysikalischen Erkundungsmethoden oberflächennaher Rohstoffe
- Fallbeispiele Erdwärme und Erze
3.45 Modul: Orientierungsprüfung [M-PHYS-100887]

Einrichtung: Universität gesamt

Bestandteil von: Orientierungsprüfung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102283</td>
<td>Klassische Experimentalphysik I, Mechanik</td>
<td>8</td>
<td>Müller</td>
</tr>
<tr>
<td>T-PHYS-102295</td>
<td>Klassische Experimentalphysik I, Mechanik - Vorleistung</td>
<td>0</td>
<td>Müller</td>
</tr>
<tr>
<td>T-PHYS-102286</td>
<td>Klassische Theoretische Physik I, Einführung</td>
<td>6</td>
<td>Shnirman</td>
</tr>
<tr>
<td>T-PHYS-102298</td>
<td>Klassische Theoretische Physik I, Einführung - Vorleistung</td>
<td>0</td>
<td>Shnirman</td>
</tr>
</tbody>
</table>

Modellierte Fristen

Dieses Modul muss bis zum Ende des **3. Semesters** bestanden werden.

Voraussetzungen

Keine
3.46 Modul: Physik der Lithosphäre, benotet [M-PHYS-101960]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103574</td>
<td>Physik der Lithosphäre, Studienleistung</td>
<td>2 LP</td>
<td>Gottschämmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103678</td>
<td>Physik der Lithosphäre, Prüfung</td>
<td>1 LP</td>
<td>Gottschämmer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vorleistung: Bearbeitung von Übungsblättern, Halten eines Vortrags
Prüfung: Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele

Die Studierenden kennen physikalische Untersuchungsmöglichkeiten der Lithosphäre, insbesondere jene, welche an der Kontinentalen Tiebohrung durchgeführt wurden. Sie können lithosphärische Gesteine im Gelände beschreiben, erkennen, einordnen und deren Entstehungsgeschichte erläutern. Sie reflektieren die neuen Kenntnisse kritisch und ordnen sie in einen größeren Zusammenhang ein.

Die Studierenden sind in der Lage, selbstorganisiert und lösungsorientiert an einer vorgegebenen konkreten Fragestellung aus dem Bereich der physikalischen Untersuchungsmethoden der Lithosphäre zu arbeiten und Fachliteratur zu verstehen. Sie können die Fragestellung überblicken, analysieren, interpretieren und bewerten. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.
Bewertet wird: Schriftliche Anfertigung eines Reflexionsberichts

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101875 - Physik der Lithosphäre, unbenotet darf nicht begonnen worden sein.

Inhalt

- Aufbau und physikalische Eigenschaften der Lithosphäre
- Abgrenzung der Lithosphäre: Definitionen
- Gesteinsphysik
- Spannungen im Gestein
- Elastizität und Biegesteifigkeit
- Wärmefluss
- Physikalische Untersuchungsmethoden der Lithosphäre
3.47 Modul: Physik der Lithosphäre, unbenotet [M-PHYS-101875]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

Leistungspunkte: 2
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-PHYS-103574 | Physik der Lithosphäre, Studienleistung | 2 LP | Gottschämmer |

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101960 - Physik der Lithosphäre, benotet darf nicht begonnen worden sein.

Inhalt
- Aufbau und physikalische Eigenschaften der Lithosphäre
- Abgrenzung der Lithosphäre: Definitionen
- Gesteinsphysik
- Spannungen im Gestein
- Elastizität und Biegesteifigkeit
- Wärmefluss
- Physikalische Untersuchungsmethoden der Lithosphäre
3.48 Modul: Platzhaltermodul Wahlpflichtbereich [M-PHYS-103140]

Einrichtung: Universität gesamt
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Platzhalter (mindestens 1 Bestandteil sowie zwischen 2 und 13 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106240</td>
<td>Platzhalter Wahlpflichtbereich 2 LP - benotet</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-106244</td>
<td>Platzhalter Wahlpflichtbereich 2 LP - unbenotet</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen

Keine
Modul: Programmieren [M-PHYS-101346]

Verantwortung: Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Programmieren

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102292 | Programmieren | 6 LP | Steinhauser |

Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

Qualifikationsziele

Der/die Studierende erwirbt Grundkenntnisse in der Programmiersprache C++. Er/sie erlernt das selbständige Entwickeln von Programmen und das Anwenden von elementaren numerischen Verfahren und Algorithmen auf physikalische Fragestellungen.

Voraussetzungen

keine

Inhalt

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (120)

Lehr- und Lernformen

- 2100211 Programmieren für Physiker, Vorlesung 2 SWS,
- 2100212 Übungen zum Programmieren für Physiker, 2 SWS,
- 2100213 Praktikum zum Programmieren für Physiker, 5 SWS.
3.50 Modul: Rezente Geodynamik (GEOD-MPGF-1) [M-BGU-101030]

Verantwortung: Dr. Malte Westerhaus
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Wahlpflichtbereich

Leistungspunkte: 4
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 1

Pflichtbestandteile
T-BGU-101772 Rezente Geodynamik, Vorleistung 1 LP Westerhaus
T-BGU-101771 Rezente Geodynamik 3 LP Westerhaus

Erfolgskontrolle(n)

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Modul M-BGU-101098 darf nicht begonnen sein

Inhalt

Empfehlungen
Grundlagen der Geophysik und Physikalischen Geodäsie sind hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung freiwilliger Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Geophysik Bachelor (B.Sc.)
Modulhandbuch mit Stand vom 02.10.2019
Lehr- und Lernformen
6025103 Rezente Geodynamik (V2)
6025104 Rezente Geodynamik (Ü1)

Literatur
Auf aktuelle Literatur wird durch den Dozenten hingewiesen.
3.51 Modul: Satellitengeodäsie und Positionsbestimmung mit GNSS [M-BGU-101795]

Verantwortung: Prof. Dr.-Ing. Bernhard Heck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Schwerpunktfach / Physikalische Geodäsie und Satellitengeodäsie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-BGU-101652	Satellitengeodäsie, Vorleistung	1 LP	Kutterer, Seitz
T-BGU-101649	Positionsbestimmung mit GNSS, Vorleistung	1 LP	Mayer
T-BGU-103458	Satellitengeodäsie und Positionsbestimmung mit GNSS	5 LP	Heck

Voraussetzungen
keine
Modul: Seminar über aktuelle Themen aus der Risikoforschung [M-PHYS-103803]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-107673 | Seminar über aktuelle Themen aus der Risikoforschung | 4 LP | Gottschämmer |

Erfolgskontrolle(n)

Preparation and presentation of a talk based on a scientific publication, critical discussion of the scientific results.

Qualifikationsziele

The students understand scientific literature regarding current topics of natural hazards and risk. They can summarize a selected topic, describe and explain the main idea to their fellow students in an oral presentation (30-40 minutes). They know how to structure and present a scientific talk. They are able to understand the topics presented by their fellow students, discuss and analyze the content critically. They are able to compare those research results and evaluate the content critically.

Zusammensetzung der Modulnote

The coursework is not graded.

Voraussetzungen

Keine

Inhalt

The students will read and discuss current literature about current topics of natural hazards and risk.

Lehr- und Lernformen

4060254 Seminar über aktuelle Fragen aus der Risikoforschung (S2)
3.53 Modul: Strukturgeologie und Tektonik [M-BGU-101996]

Verantwortung: Prof. Dr. Agnes Kontny
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Wahlpflichtbereich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103712 | Strukturgeologie und Tektonik | 4 LP | Kontny |

Erfolgskontrolle(n)

Erfolgskontrolle in Form einer schriftlichen Prüfungsleistung gemäß §4 Abs. 2 der jeweils einschlägigen SPO.

Qualifikationsziele

Die Studierenden kennen die mechanischen Grundlagen der Gesteinsfestigkeit, sie können Richtungsdaten, gefügeanalytische Projektionsmethoden und geometrische Konstruktionen im Schmidt Netz darstellen und können das Deformationsverhalten von Gesteinen im Kristall- bis Lithosphärenmaßstab erläutern.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen

Keine

Inhalt

Materialverhalten, Kräfte und Spannung, Mohrscher Spannungskreis, Mohr-Coulomb Kriterium, Flinn-Diagramm, Faltenklassifikation, Falten und Rotation im Schmidt Netz, Paläospannungsanalyse, bruchhafte Verformung, duktile Verformung, Foliation, Lineation, Scherzonengefüge

Arbeitsaufwand

45h Präsenzzeit, 75h Selbststudium incl. Prüfung

Literatur

(eine aktuelle Liste wird den Studierenden in der Lehrveranstaltung ausgehändigt)

Geophysik Bachelor (B.Sc.)
Modulhandbuch mit Stand vom 02.10.2019
3.54 Modul: Überfachliche Qualifikationen [M-PHYS-102348]

Verantwortung: Dr. Andreas Barth
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlbereich (mind. 6 LP)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Beschreibung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104645</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - benotet</td>
<td>2</td>
</tr>
<tr>
<td>T-PHYS-104647</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - unbenotet</td>
<td>2</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
3.55 Modul: Weitere Leistungen [M-PHYS-102013]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Zusatzleistungen (max. 30 LP)

<table>
<thead>
<tr>
<th>Plattform</th>
<th>Leistung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103860</td>
<td>Platzhalter Zusatzleistungen 1</td>
<td>2</td>
</tr>
<tr>
<td>T-PHYS-103870</td>
<td>Platzhalter Zusatzleistungen 11</td>
<td>2</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4 Teilleistungen

4.1 Teilleistung: Bachelorarbeit [T-PHYS-103214]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101669 - Modul Bachelorarbeit

Teilleistungsart: Abschlussarbeit
Leistungspunkte: 12
Version: 1

Voraussetzungen
siehe Modul Bachelorarbeit.

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit: 6 Monate
Maximale Verlängerungsfrist: 1 Monate
Korrekturfrist: 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.
4.2 Teilleistung: Berufspraktikum [T-PHYS-103092]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101620 - Berufspraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Hertweck</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Berufspraktikum</td>
<td>2</td>
<td>Praktikum (P)</td>
<td>Hertweck</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.3 Teilleistung: Das geowissenschaftliche Gemeinschaftsobservatorium bei Schiltach, Studienleistung [T-PHYS-103569]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101870 - Das geowissenschaftliche Gemeinschaftsobservatorium bei Schiltach

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4060403 | In Situ: Das geowissenschaftliche Gemeinschaftsobservatorium bei Schiltach | 1 SWS | Vorlesung (V) | Gottschämmer, Forbriger |

Voraussetzungen
keine
4.4 Teilleistung: Einführung in die Geophysik I [T-PHYS-102306]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101342 - Allgemeine Geophysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4060011 Einführung in die Geophysik I</td>
<td>2 SWS Vorlesung (V) Bohlen, Gottschämmer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4060012 Übungen zur Einführung in die Geophysik I für Geophysiker und Physiker</td>
<td>1 SWS Übung (Ü) Bohlen, Gottschämmer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4060016 Übungen zur Einführung in die Geophysik für Studierende anderer Fachrichtungen</td>
<td>1 SWS Übung (Ü) Bohlen, N.</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Anmerkungen
Wahl der Übungsveranstaltung entsprechend Fachrichtung
4.5 Teilleistung: Einführung in die Geophysik II [T-PHYS-102307]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101342 - Allgemeine Geophysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2019</th>
<th>4060021</th>
<th>Einführung in die Geophysik II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Rietbrock, Gottschämmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS 2019</td>
<td>4060022</td>
<td>Übungen zur Einführung in die Geophysik II</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.6 Teilleistung: Einführung in die Hydrogeologie [T-BGU-101499]

Verantwortung: Prof. Dr. Nico Goldscheider
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100594 - Einführung in die Hydrogeologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 6339050 | Grundlagen der Hydrogeologie (Studienplan 2009 G10-1, G10-2) | 4 SWS | Vorlesung / Übung (VÜ) | Goldscheider |

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 90 Minuten

Voraussetzungen
keine
4.7 Teilleistung: Einführung in die Ingenieurgeologie [T-BGU-101500]

Verantwortung: Prof. Dr. Philipp Blum
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-100595 - Einführung in die Ingenieurgeologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 6339057 | Einführung in die Ingenieurgeologie | 4 SWS | Vorlesung / Übung (VÜ) | Blum |

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min

Voraussetzungen
keine
4.8 Teilleistung: Einführung in die praktische Geophysik [T-PHYS-102308]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105111 - Experimentelle Geophysik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 4060031 | Praktische Geophysik | 1 SWS | Vorlesung (V) | Ritter |

Voraussetzungen
keine
4.9 Teilleistung: Einführung in die Vulkanologie, Prüfung [T-PHYS-103644]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101866 - Einführung in die Vulkanologie, benotet

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4060251</td>
<td>Introduction to Volcanology</td>
<td>1 SWS</td>
</tr>
<tr>
<td>SS 2019 4060252</td>
<td>Exercises to Introduction to Volcanology</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Voraussetzungen
Erfolgreiche Teilnahme an "Einführung in die Vulkanologie, Studienleistung"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103553 - Einführung in die Vulkanologie, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.10 Teilleistung: Einführung in die Vulkanologie, Studienleistung [T-PHYS-103553]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-101866 - Einführung in die Vulkanologie, benotet
- M-PHYS-101944 - Einführung in die Vulkanologie, unbenotet

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>Kurzbeschreibung</th>
<th>Stundensätze</th>
<th>Veranstaltung</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060251</td>
<td>Introduction to Volcanology</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060252</td>
<td>Exercises to Introduction to Volcanology</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
</tbody>
</table>

Voraussetzungen

die Voraussetzungen werden nicht genannt.
Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen [T-BGU-101681]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101846 - Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen

Teilleistungssort
Prüfungsleistung schriftlich

Leistungspunkte
3

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>6071101</th>
<th>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Rösch, Wursthorn</th>
</tr>
</thead>
</table>

Voraussetzungen

bestandene Vorleistung in Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (online-Test: T-BGU-103541)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

4.12 Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung [T-BGU-103541]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101846 - Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 6071101 | Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü | 4 SWS | Vorlesung / Übung (VÜ) | Rösch, Wursthorn |

Voraussetzungen
keine
4.13 Teilleistung: Endogene Dynamik [T-BGU-101008]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Armin Zeh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-BGU-101547 - Geologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsleistung</th>
<th>SWS</th>
<th>Dozenten der Geowissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6339001</td>
<td>Endogene Dynamik (Allgemeine Geologie)</td>
<td>3</td>
<td>Dozenten der Geowissenschaften</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Endogene Dynamik (T-BGU-101008): Schriftliche Prüfung, 120 Minuten

Voraussetzungen

keine
4.14 Teilleistung: Erkennen und Bestimmen von Mineralen und Gesteinen [T-BGU-101009]

Verantwortung: apl. Prof. Dr. Kirsten Drüppel
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101547 - Geologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Übung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6339002</td>
<td>Erkennen und Bestimmen von Mineralen und Gesteinen</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Drüppel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>6339005</td>
<td>Erkennen und Bestimmen von Mineralen und Gesteinen (Nebenfach)</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen

keine
4.15 Teilleistung: Fernerkundungsverfahren [T-BGU-103542]

Verantwortung: Dr.-Ing. Uwe Weidner

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101848 - Fernerkundungsverfahren

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Voraussetzungen

Vorleistung in Fernerkundungsverfahren

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101638 - Fernerkundungsverfahren, Vorleistung muss erfolgreich abgeschlossen worden sein.
4.16 Teilleistung: Fernerkundungsverfahren, Vorleistung [T-BGU-101638]

Verantwortung: Dr.-Ing. Uwe Weidner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101848 - Fernerkundungsverfahren

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6020244 | Fernerkundungsverfahren, Übung | 1 SWS | Übung (Ü) | Weidner |

Erfolgskontrolle(n)
Durchführung einer Klassifizierung

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
4.17 Teilleistung: Figur und Schwerefeld der Erde [T-BGU-103460]

Verantwortung: Prof. Dr.-Ing. Bernhard Heck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101796 - Figur und Schwerefeld der Erde

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
3

Version
1

Voraussetzungen

Vorleistung in Figur und Schwerefeld der Erde

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

4.18 Teilleistung: Figur und Schwerefeld der Erde, Vorleistung [T-BGU-101643]

Verantwortung: Prof. Dr.-Ing. Bernhard Heck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101796 - Figur und Schwerefeld der Erde

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2019 | 6020164 | Figur und Schwerefeld der Erde, Übung | 2 SWS | Übung (Ü) | Seitz, Westerhaus |
4.19 Teilleistung: Geländemethoden I [T-BGU-101020]

Verantwortung:	Prof. Dr. Christoph Hilgers
Einrichtung:	KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:	M-BGU-101995 - Geowissenschaften

Lehrveranstaltungen

| SS 2019 | 6310553 | Geländemethoden I | 3 SWS | Übung (Ü) | Blum, Busch |

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Studienleistung nach §4 Abs. 3 gemäß SPO 2015 B.Sc. Angewandte Geowissenschaften. Diese beinhaltet

- einen Tag Theorie,
- zwei Geländetage mit den Strukturgeologen, dazu Abgabe des Feldbuches und der im Gelände ausgewerteten Messdaten
- ein Geländetag mit den Ingenieurgeologen mit Abgabe eines ca. 10-seitigen Berichts.

Abgabetermin von Feldbuch, Messdaten und Bericht 4 Wochen nach Ende der Geländearbeit.

Bei Import in andere Studiengänge: Studienleistung gemäß § 4 Abs. 3 der jeweilig einschlägigen Prüfungsordnung.

Voraussetzungen

keine

Empfehlungen

Die vorherige Teilnahme am Modul “Dynamik der Erde II” (M-BGU-100586) wird empfohlen.

Anmerkungen

Die Geländemethoden I finden i.d.R. gegen Ende des ersten Studienjahres Ende September / Anfang Oktober statt.

Im SS 2019 findet der strukturgeologische Teil in der Pfingstwoche statt (zwei Tage zwischen 11.6 und 14.6.2019)
4.20 Teilleistung: Geländemethoden II [T-BGU-101021]

Verantwortung: Dr. rer. nat. Nadine Göppert
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101994 - Geländemethoden II

Teilleistungsart

Leistungspunkte: 2

Turnus: Jedes Sommersemester

Version: 1

Lehrveranstaltungen

SS 2019 6310560 Geländemethoden II 2 SWS Übung (Ü) Goldscheider, Göppert

Erfolgskontrolle(n)

Bei Import in andere Studiengänge: Studienleistung gemäß § 4 Abs. 3 der jeweilig einschlägigen Prüfungsordnung (Präsentation).

Voraussetzungen

die vorherige Teilnahme am Modul "Einführung in die Hydrogeologie" (M-BGU-100594) wird empfohlen.

Empfehlungen

Die vorherige Teilnahme am Modul "Einführung in die Hydrogeologie" (M-BGU-100594) wird empfohlen.
4.21 Teilleistung: Geländeübungen und Exkursionen [T-BGU-101019]

Verantwortung: KIT Dozenten
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101547 - Geologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>7</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6310550</td>
<td>Geländeübungen und Exkursionen</td>
<td>5 SWS</td>
<td>Übung (Ü)</td>
<td>Dozenten</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6339037</td>
<td>Exkursionen zur Hydro-, Ingenieur- und Strukturgeologie</td>
<td>8 SWS</td>
<td>Exkursion (EXK)</td>
<td>Dozenten der Geowissenschaften</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Bei Import in andere Studiengänge: Studienleistung gemäß § 4 Abs. 3 der jeweilig einschlägigen Prüfungsordnung.

Voraussetzungen
keine

Empfehlungen
Keine
4.22 Teilleistung: Geological Hazards and Risk [T-PHYS-103525]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101833 - Naturgefahren und Risiken

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Oberlehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gottschämmer, Daniell</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4060122</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Gottschämmer, Daniell</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.23 Teilleistung: Geologische Karten und Profile [T-BGU-101010]

Verantwortung: Dr. Ruth Haas Nüesch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101995 - Geowissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2019 6310551 Geologische Karten und Profile 3 SWS Vorlesung / Übung (VÜ) Haas Nüesch, Kontny

Erfolgskontrolle(n)
schriftliche Prüfung, 150 min

Voraussetzungen
Voraussetzung zur Teilnahme an der Teilmodulprüfung: regelmäßige Teilnahme (max. 2-maliges Fehlen), 100% der Hausaufgaben fristgerecht abgegeben, 80% der Hausaufgaben bestanden.
Teilleistung: Geologische Kartierübung [T-BGU-101022]

Verantwortung: Prof. Dr. Agnes Kontny
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101995 - Geowissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 6339019 | Geologische Kartierübung | 5 SWS | Übung (Ü) | Hilgers, Kontny |

Erfolgskontrolle(n)

Die Erfolgskontrolle ist eine Prüfungsleistung anderer Art gemäß §4 Abs. 2 gemäß SPO 2015 B.Sc. Angewandte Geowissenschaften und beinhaltet eine 7-tägige Kartierung im Team mit Erstellung einer geologischen Karte, Führung eines Feldbuches, anschließender Erstellung eines Kartierberichtes von ca. 20 Seiten und eine Reinzeichnung der geologischen Karte.

Abgabe des Berichtes und der Karte 6 Wochen nach Ende der Kartierung.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101020 - Geländemethoden I muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-BGU-101010 - Geologische Karten und Profile muss begonnen worden sein.

Anmerkungen

4.25 Teilleistung: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Prüfung [T-PHYS-103674]

Verantwortung: Dr. Ellen Gottschämmern
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101873 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103572 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Teilleistung: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung [T-PHYS-103572]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-101873 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet
- M-PHYS-101953 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet

Teilleistungsart
- Studienleistung
Leistungspunkte
- 4
Version
- 1

Voraussetzungen

Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung".

- Grundlagen der Vulkanologie
- Zusammenhang von Vulkanismus und Tektonik
- Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegsweg, Differentiation)
- Vulkanische Förderprodukte
- Vulkanbauten
- Eruptionsmechanismen, Eruptionsverhalten
- Grundverständnis des Monitoring von Vulkansen, Kenntnis der Aufgaben von Vulkanobservatorien und deren historischer Entwicklung
- physikalische und mathematische Grundlagen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103553 - Einführung in die Vulkanologie, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.27 Teilleistung: Geophysikalische Erkundung von Vulkanfeldern, Prüfung [T-PHYS-103672]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Joachim Ritter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-101951 - Geophysikalische Erkundung von Vulkanfeldern, benotet</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
1

Version
1

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103573 - Geophysikalische Erkundung von Vulkanfeldern, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.28 Teilleistung: Geophysikalische Erkundung von Vulkanfeldern, Studienleistung [T-PHYS-103573]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-101874 - Geophysikalische Erkundung von Vulkanfeldern, unbenotet
- M-PHYS-101951 - Geophysikalische Erkundung von Vulkanfeldern, benotet

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung".

- Grundlagen der Vulkanologie
- Zusammenhang von Vulkanismus und Tektonik
- Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegswege, Differentiation)
- Vulkanische Förderprodukte
- Vulkanbauten
- Eruptionsmechanismen, Eruptionsverhalten
- Grundverständnis des Monitoring von Vulkanen, Kenntnis der Aufgaben von Vulkanobservatorien und deren historischer Entwicklung
- physikalische und mathematische Grundlagen
4.29 Teilleistung: Geophysikalische Geländeübungen [T-PHYS-102310]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105111 - Experimentelle Geophysik I

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
6

Version
2

Lehrveranstaltungen

| SS 2019 | 4060312 | Geophysikalische Geländeübungen | 4 SWS | Übung (Ü) | Forbriger, Gaßner, Schroth, Westerhaus, Bohlen |

Voraussetzungen
Studierende müssen T-PHYS-102306 - Einführung in die Geophysik I bestanden haben.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-102306 - Einführung in die Geophysik I muss erfolgreich abgeschlossen worden sein.
4.30 Teilleistung: Geophysikalische Laborübungen [T-PHYS-102309]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105111 - Experimentelle Geophysik I

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 5
Version: 1

Lehrveranstaltungen

| WS 18/19 | 4060203 | Geophysikalische Laborübungen für Geophysiker und Physiker | 4 SWS | Übung (Ü) | Ritter, Gottschämmer, Zieger, Kuhn, N. |
| WS 18/19 | 4060206 | Geophysikalische Laborübungen für Studierende anderer Fachrichtungen | 4 SWS | Übung (Ü) | Ritter, Gottschämmer, Zieger, Kuhn, N. |

Voraussetzungen
keine

Anmerkungen
Wahl der Lehrveranstaltung entsprechend Fachrichtung
4.31 Teilleistung: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung [T-PHYS-103673]

Teilleistung: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung [T-PHYS-103673]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101952 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 1
Version 1

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103571 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.32 Teilleistung: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung [T-PHYS-103571]

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung"

- Grundlagen der Vulkanologie
- Zusammenhang von Vulkanismus und Tektonik
- Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegsweg, Differentiation)
- Vulkanische Förderprodukte
- Vulkanbauten
- Eruptionsmechanismen, Eruptionsverhalten
- Grundverständnis des Monitoring von Vulkanen, Kenntnis der Aufgaben von Vulkanoobservatorien und deren historischer Entwicklung
- physikalische und mathematische Grundlagen
4.33 Teilleistung: Geophysikalische Überwachung im Tunnelbau, Studienleistung [T-PHYS-106248]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103141 - Geophysikalische Überwachung im Tunnelbau

Voraussetzungen
keine
4.34 Teilleistung: Historische Seismologie für Gefährdungsabschätzung, Studienleistung [T-PHYS-103679]

Verantwortung: Dr. Ellen Gottschämm
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101961 - Historische Seismologie für Gefährdungsabschätzung

Teilleistungsart
Studienleistung
Leistungspunkte
1
Turnus
Unregelmäßig
Version
1

Lehrveranstaltungen

| WS 18/19 | 4060131 | In Situ: Historische Seismologie für Gefährdungsabschätzung | 1 SWS | Vorlesung (V) | Ritter, Gottschämm |

Voraussetzungen
keine
4.35 Teilleistung: Höhere Mathematik I [T-MATH-102224]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm
Dr. Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101327 - Höhere Mathematik I

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 10

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>0130200</td>
<td>Höhere Mathematik I für die Fachrichtung Physik</td>
<td>6</td>
<td>Vorlesung (V)</td>
<td>Schmoeger</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>0130300</td>
<td>Übungen zu 0130200</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Schmoeger</td>
</tr>
</tbody>
</table>

Voraussetzungen
- keine
4.36 Teilleistung: Höhere Mathematik II [T-MATH-102225]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm
Dr. Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101328 - Höhere Mathematik II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 10
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>0180500</th>
<th>Höhere Mathematik II für die Fachrichtung Physik</th>
<th>6 SWS</th>
<th>Vorlesung (V)</th>
<th>Schmoeger</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>0180600</td>
<td>Übungen zu 0180500</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Schmoeger</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.37 Teilleistung: Höhere Mathematik III [T-MATH-102226]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101329 - Höhere Mathematik III

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lerneinheit</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>0130600</td>
<td>Höhere Mathematik III für die Fachrichtung Physik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Kunstmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>0130700</td>
<td>Übungen zu 0130600</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Kunstmann</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.38 Teilleistung: Induced Seismicity, Prüfung [T-PHYS-103677]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101959 - Induced Seismicity, benotet

Erfolgskontrolle(n)
The procedure will be announced in the lecture.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103575 - Induced Seismicity, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.39 Teilleistung: Induced Seismicity, Studienleistung [T-PHYS-103575]

Verantwortung: Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-101878 - Induced Seismicity, unbenotet
- M-PHYS-101959 - Induced Seismicity, benotet

Teilleistungsart: Studienleistung

Leistungspunkte: 3

Turnus: Unregelmäßig

Version: 1

Voraussetzungen:
keine
4.40 Teilleistung: In-Situ: Seismische Gefährdung im Apennin [T-PHYS-108690]

Verantwortung: Dr. Ellen Gottschämmer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104195 - In-Situ: Seismische Gefährdung im Apennin

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 6
Version: 1

Voraussetzungen
keine
4.41 Teilleistung: In-Situ: Summer School Bandung: Seismology/Geohazards [T-PHYS-108691]

Verantwortung: Dr. Ellen Gottschämmer
Prof. Dr. Andreas Rietbrock

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104196 - In-Situ: Summer School Bandung: Seismology/Geohazards

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
6

Version
1

Voraussetzungen
keine
4.42 Teilleistung: Inversion und Tomographie, Vorleistung [T-PHYS-102332]

Verantwortung: Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

Teilleistungsart
- Studienleistung schriftlich

Leistungspunkte
- 0

Version
- 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Inversion and Tomography</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Ritter, Gaßner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4060231</td>
<td>Inversion and Tomography</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Ritter, Gaßner</td>
</tr>
<tr>
<td>SS 2019 4060232</td>
<td>Exercises to Inversion and Tomography</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Ritter, Gaßner</td>
</tr>
</tbody>
</table>

Voraussetzungen
- keine
4.43 Teilleistung: Klassische Experimentalphysik I, Mechanik [T-PHYS-102283]

Verantwortung: Prof. Dr. Thomas Müller
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
M-PHYS-100887 - Orientierungsprüfung
M-PHYS-101347 - Klassische Experimentalphysik I, Mechanik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 8

Turnus Jedes Wintersemester

Version 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 4010011</td>
<td>Klassische Experimentalphysik I (Physik I, Mechanik)</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 18/19 4010012</td>
<td>Übungen zu Klassische Experimentalphysik I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.44 Teilleistung: Klassische Experimentalphysik I, Mechanik - Vorleistung [T-PHYS-102295]

Verantwortung: Prof. Dr. Thomas Müller
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100887 - Orientierungsprüfung
M-PHYS-101347 - Klassische Experimentalphysik I, Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4010011</td>
<td>Klassische Experimentalphysik I (Physik I, Mechanik)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Wegener</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4010012</td>
<td>Übungen zu Klassische Experimentalphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Wegener, Naber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
4.45 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik [T-PHYS-102284]

Verantwortung: Prof. Dr. Martin Wegener

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101348 - Klassische Experimentalphysik II, Elektrodynamik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
7

Turnus
Jedes Sommersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SWS</th>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4010021</td>
<td>3</td>
<td>Klassische Experimentalphysik II (Physik II, Elektrodynamik)</td>
<td>Wegener</td>
<td></td>
</tr>
<tr>
<td>SS 2019 4010022</td>
<td>2</td>
<td>Übungen zu Klassische Experimentalphysik II</td>
<td>Wegener, Naber</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
gerfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.46 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik - Vorleistung [T-PHYS-102296]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101348 - Klassische Experimentalphysik II, Elektrodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010021</td>
<td>Klassische Experimentalphysik II (Physik II, Elektrodynamik)</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Wegener</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010022</td>
<td>Übungen zu Klassische Experimentalphysik II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Wegener, Naber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
4.47 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik [T-PHYS-102285]

Verantwortung:	Prof. Dr. Martin Wegener
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	M-PHYS-101349 - Klassische Experimentalphysik III, Optik und Thermodynamik

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 9

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- oder Übungseinheit</th>
<th>ECTS</th>
<th>Art</th>
<th>Ansprechpartner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4010031 Klassische Experimentalphysik III (Physik III, Optik und Thermodynamik)</td>
<td>5 SWS</td>
<td>Vorlesung (V)</td>
<td>Bernlochner, Naber</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4010032 Übungen zu Klassische Experimentalphysik III</td>
<td>2 SWS</td>
<td>Übung (U)</td>
<td>Bernlochner, Guigas</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
- erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
- Es müssen die folgenden Bedingungen erfüllt werden:
4.48 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung [T-PHYS-102297]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101349 - Klassische Experimentalphysik III, Optik und Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Studiennummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltungsdauer</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/19</td>
<td>4010031</td>
<td>Klassische Experimentalphysik III (Physik III, Optik und Thermodynamik)</td>
<td>5 SWS</td>
<td>Vorlesung (V)</td>
<td>Bernlochner, Naber</td>
</tr>
<tr>
<td>18/19</td>
<td>4010032</td>
<td>Übungen zu Klassische Experimentalphysik III</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Bernlochner, Guigas</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
4.49 Teilleistung: Klassische Theoretische Physik I, Einführung [T-PHYS-102286]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-100887 - Orientierungsprüfung
- M-PHYS-101350 - Klassische Theoretische Physik I, Einführung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4010111</td>
<td>Klassische Theoretische Physik I (Theorie A, Einführung)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schmalian</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4010112</td>
<td>Übungen zu Klassische Theoretische Physik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Schmalian, Hecker, Kiselev</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-102298 - Klassische Theoretische Physik I, Einführung - Vorleistung muss erfolgreich abgeschlossen worden sein.
4.50 Teilleistung: Klassische Theoretische Physik I, Einführung - Vorleistung [T-PHYS-102298]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100887 - Orientierungsprüfung
M-PHYS-101350 - Klassische Theoretische Physik I, Einführung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Seminare-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4010111</td>
<td>Klassische Theoretische Physik I (Theorie A, Einführung)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schmalian</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4010112</td>
<td>Übungen zu Klassische Theoretische Physik I</td>
<td>2</td>
<td>Übung (U)</td>
<td>Schmalian, Hecker, Kiselev</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
4.51 Teilleistung: Klassische Theoretische Physik II, Mechanik [T-PHYS-102287]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101351 - Klassische Theoretische Physik II, Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4010121 | Klassische Theoretische Physik II (Theorie B, Mechanik) | 2 SWS | Vorlesung (V) | Melnikov |
| SS 2019 | 4010122 | Übungen zur Klassischen Theoretischen Physik II | 2 SWS | Übung (Ü) | Melnikov, Rietkerk, Jaquier |

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.52 Teilleistung: Klassische Theoretische Physik II, Mechanik - Vorleistung [T-PHYS-102299]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101351 - Klassische Theoretische Physik II, Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010121</td>
<td>Klassische Theoretische Physik II (Theorie B, Mechanik)</td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010122</td>
<td>Übungen zur Klassischen Theoretischen Physik II</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
4.53 Teilleistung: Klassische Theoretische Physik III, Elektrodynamik [T-PHYS-102288]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101352 - Klassische Theoretische Physik III, Elektrodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
</table>
| WS 18/19 | 4010131 | Klassische Theoretische Physik III (Theorie C, Elektrodynamik) | 4 SWS | Vorlesung (V) | Schwetz-Mangold
| WS 18/19 | 4010132 | Übungen zu Klassische Theoretische Physik III | 2 SWS | Übung (Ü) | Schwetz-Mangold, Pargner, Fischer |

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.54 Teilleistung: Klassische Theoretische Physik III, Elektrodynamik - Vorleistung [T-PHYS-102300]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101352 - Klassische Theoretische Physik III, Elektrodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4010131</td>
<td>Klassische Theoretische Physik III (Theorie C, Elektrodynamik)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Schwetz-Mangold</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4010132</td>
<td>Übungen zu Klassische Theoretische Physik III</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Schwetz-Mangold, Pargner, Fischer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
4.55 Teilleistung: Lineare Inversion [T-PHYS-110352]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Empfehlungen

Grundkenntnisse in Linux und einer Programmiersprache werden vorausgesetzt.
4.56 Teilleistung: Messverfahren in der physikalischen Vulkanologie, Prüfung [T-PHYS-103671]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101950 - Messverfahren in der physikalischen Vulkanologie, benotet

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
1

Version
1

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103570 - Messverfahren in der physikalischen Vulkanologie, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.57 Teilleistung: Messverfahren in der physikalischen Vulkanologie, Studienleistung [T-PHYS-103570]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101871 - Messverfahren in der physikalischen Vulkanologie, unbenotet
M-PHYS-101950 - Messverfahren in der physikalischen Vulkanologie, benotet

Teilleistungsart
Studienleistung
Leistungspunkte 1
Version 1

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung"

- Grundlagen der Vulkanologie
- Zusammenhang von Vulkanismus und Tektonik
- Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegsweg, Differentiation)
- Vulkanische Förderprodukte
- Vulkanbauten
- Eruptionsmechanismen, Eruptionsverhalten
- Grundverständnis des Monitoring von Vulkannen, Kenntnis der Aufgaben von Vulkanobservatorien und deren historischer Entwicklung
- physikalische und mathematische Grundlagen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103553 - Einführung in die Vulkanologie, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.58 Teilleistung: Mobile GIS / Location Based Services [T-BGU-101712]

Verantwortung: Prof. Dr. Martin Breunig
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101045 - Mobile GIS / Location Based Services

Voraussetzungen
Vorleistung in Mobile GIS/Location Based Services

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101713 - Mobile GIS / Location Based Services, Prerequisite muss erfolgreich abgeschlossen worden sein.
4.59 Teilleistung: Mobile GIS / Location Based Services, Prerequisite [T-BGU-101713]

Verantwortung: Dr.-Ing. Edgar Butwilowski
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101045 - Mobile GIS / Location Based Services

Teilleistungsart
Studienleistung
Leistungspunkte
2
Version
1

Voraussetzungen
keine
4.60 Teilleistung: Moderne Experimentalphysik für Geophysiker und Meteorologen [T-PHYS-102294]

Verantwortung: Prof. Dr. Ulrich Husemann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101345 - Moderne Experimentalphysik für Geophysiker und Meteorologen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2019 4012141 Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurrädagogen 4 SWS Vorlesung (V) Müller

SS 2019 4012142 Übungen zur Modernen Physik für Geophysiker und Meteorologen 2 SWS Übung (Ü) Müller, Gebauer

Erfolgskontrolle(n)
Schriftliche Prüfung (ca. 120 Minuten)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103205 - Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung muss erfolgreich abgeschlossen worden sein.
4.61 Teilleistung: Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung [T-PHYS-103205]

Verantwortung: Prof. Dr. Ulrich Husemann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101345 - Moderne Experimentalphysik für Geophysiker und Meteorologen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>WS</th>
<th>Veranstaltungstyp</th>
<th>Lehrperson(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4012141</td>
<td>Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Müller</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4012142</td>
<td>Übungen zur Modernen Physik für Geophysiker und Meteorologen</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Müller, Gebauer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4012145</td>
<td>Übungen zur Modernen Physik für Lehramtskandidaten und Ingenieurpädagogen</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Müller, Gebauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Erfolgreiche Teilnahme an den Übungen.

Voraussetzungen
keine
4.62 Teilleistung: Oberflächennahe geophysikalische Erkundung von Rohstoffen, Studienleistung [T-PHYS-103645]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101946 - Oberflächennahe geophysikalische Erkundung von Rohstoffen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.63 Teilleistung: Physik der Lithosphäre, Prüfung [T-PHYS-103678]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung:
Dr. Ellen Gottschämmer

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-101960 - Physik der Lithosphäre, benotet

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103574 - Physik der Lithosphäre, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.64 Teilleistung: Physik der Lithosphäre, Studienleistung [T-PHYS-103574]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Ellen Gottschämmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-PHYS-101875 - Physik der Lithosphäre, unbenotet
 M-PHYS-101960 - Physik der Lithosphäre, benotet |

Voraussetzungen
keine
4.65 Teilleistung: Physik seismischer Messinstrumente, Vorlesung [T-PHYS-102325]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsschlüssel</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4060051</td>
<td>Physics of seismic instruments</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Forbriger</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4060052</td>
<td>Exercise on physics of seismic instruments</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Forbriger, Ciesielski, Rietbrock</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.66 Teilleistung: Platzhalter Mastervorzug 1 [T-PHYS-104084]

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.67 Teilleistung: Platzhalter Mastervorzug 11 [T-PHYS-104095]

Einrichtung: Universität gesamt

Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
2

Version
1

Voraussetzungen
keine
4.68 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - benotet [T-PHYS-104645]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102348 - Überfachliche Qualifikationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.69 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - unbenotet [TPHYS-104647]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102348 - Überfachliche Qualifikationen</td>
</tr>
</tbody>
</table>

Teilleistungsart	Studienleistung	Leistungspunkte	Version
 | | 2 | 1 |

Voraussetzungen
keine
4.70 Teilleistung: Platzhalter Wahlpflichtbereich 2 LP - benotet [T-PHYS-106240]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-103140 - Platzhaltermodul Wahlpflichtbereich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.71 Teilleistung: Platzhalter Wahlpflichtbereich 2 LP - unbenotet [T-PHYS-106244]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-103140 - Platzhaltermodul Wahlpflichtbereich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.72 Teilleistung: Platzhalter Zusatzleistungen 1 [T-PHYS-103860]

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-102013 - Weitere Leistungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.73 Teilleistung: Platzhalter Zusatzleistungen 11 [T-PHYS-103870]

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-102013 - Weitere Leistungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.74 Teilleistung: Positionsbestimmung mit GNSS, Vorleistung [T-BGU-101649]

Verantwortung: Dr.-Ing. Michael Mayer
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101795 - Satellitengeodäsie und Positionsbestimmung mit GNSS

Voraussetzungen
keine
4.75 Teilleistung: Programmieren [T-PHYS-102292]

Verantwortung:	Prof. Dr. Matthias Steinhauser
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	M-PHYS-101346 - Programmieren

Teilleistungsart

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4010221</th>
<th>Programmieren für Physiker</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Steinhauser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010222</td>
<td>Übungen zu Programmieren für Physiker</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Steinhauser, Mildenberger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010223</td>
<td>Praktikum zum Programmieren für Physiker</td>
<td>5 SWS</td>
<td>Praktikum (P)</td>
<td>Steinhauser, Mildenberger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung. Die erfolgreiche Teilnahme an den praktischen Übungen berechtigt zur Teilnahme an der Übungsklausur.

Voraussetzungen
keine
Teileistung: Rechner- und Programmnutzung am GPI [T-PHYS-110354]

Verantwortung: Dr. Thomas Hertweck
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105116 - Experimentelle Geophysik II

Voraussetzungen
keine
4 TEILLEISTUNGEN

4.77 Teilleistung: Rezente Geodynamik [T-BGU-101771]

Verantwortung: Dr. Malte Westerhaus
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101030 - Rezente Geodynamik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 3
Version 1

Voraussetzungen
Vorleistung in Rezente Geodynamik

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101772 - Rezente Geodynamik, Vorleistung muss erfolgreich abgeschlossen worden sein.
4.78 Teilleistung: Rezente Geodynamik, Vorleistung [T-BGU-101772]

Verantwortung: Dr. Malte Westerhaus
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101030 - Rezente Geodynamik

Voraussetzungen
keine
4.79 Teilleistung: Satellitengeodäsie und Positionsbestimmung mit GNSS [T-BGU-103458]

Verantwortung: Prof. Dr.-Ing. Bernhard Heck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101795 - Satellitengeodäsie und Positionsbestimmung mit GNSS

Voraussetzungen
Vorleistungen in Positionsbestimmung mit GNSS sowie Satellitengeodäsie

Modellierte Voraussetzungen
Es muss eine von 2 Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101649 - Positionsbestimmung mit GNSS, Vorleistung muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-BGU-101652 - Satellitengeodäsie, Vorleistung muss erfolgreich abgeschlossen worden sein.
4.80 Teilleistung: Satellitengeodäsie, Vorleistung [T-BGU-101652]

Verantwortung: Prof. Dr.-Ing. Hansjörg Kutterer
Dr. Kurt Seitz

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101795 - Satellitengeodäsie und Positionsbestimmung mit GNSS

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 60201512</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.81 Teilleistung: Seismic Modelling, Prerequisite [T-PHYS-108636]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

Teilleistungsart: Studienleistung schriftlich
Leistungspunkte: 0
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td>Vorlesung (V)</td>
<td>Bohlen, Pan</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Bohlen, Pan</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.82 Teilleistung: Seismics, Prerequisite [T-PHYS-109266]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

Teilleistungsart: Studienleistung schriftlich
Leistungspunkte: 0
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 2018/19</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4060111</td>
<td>Seismics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>4060112</td>
<td>Exercises on Seismics</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hertweck, Steinweg, Bohlen</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
4.83 Teilleistung: Seismologische Feldübung [T-PHYS-110353]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105116 - Experimentelle Geophysik II
4.84 Teilleistung: Seismology, Prerequisite [T-PHYS-109267]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilleistungsart: Studienleistung schriftlich

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Leistungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.85 Teilleistung: Seminar über aktuelle Themen aus der Risikoforschung [T-PHYS-107673]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103803 - Seminar über aktuelle Themen aus der Risikoforschung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 4060284 | Seminar über aktuelle Themen aus der Risikoforschung (Literaturseminar) | 2 SWS | Seminar (S) | Gottschämmer |

Voraussetzungen
keine
4.86 Teilleistung: Signalverarbeitung in der Geodäsie, Prüfung [T-BGU-101689]

Verantwortung: Dr. Malte Westerhaus
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105116 - Experimentelle Geophysik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V/Ü)</th>
<th>Dozent(-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6020141</td>
<td>Signalverarbeitung in der Geodäsie</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Westerhaus</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6020142</td>
<td>Signalverarbeitung in der Geodäsie, Übung</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Heck, Westerhaus</td>
</tr>
</tbody>
</table>

Voraussetzungen

Vorleistung in Signalverarbeitung in der Geodäsie

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

4.87 Teilleistung: Signalverarbeitung in der Geodäsie, Vorleistung [T-BGU-101616]

Verantwortung: Dr. Malte Westerhaus

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-PHYS-105116 - Experimentelle Geophysik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Unterrichtsbezeichnung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6020142</td>
<td>Signalverarbeitung in der Geodäsie, Übung</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Heck, Westerhaus</td>
</tr>
</tbody>
</table>

Voraussetzungen

die nicht notwendig sein
4.88 Teilleistung: Strukturgeologie und Tektonik [T-BGU-103712]

Verantwortung: Prof. Dr. Agnes Kontny

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101996 - Strukturgeologie und Tektonik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp (V/U)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6339009</td>
<td>Strukturgeologie und Tektonik</td>
<td>3</td>
<td>Vorlesung / Übung (V/U)</td>
<td>Kontny</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.89 Teilleistung: Theorie seismischer Wellen, Vorleistung [T-PHYS-102330]

Verantwortung: Prof. Dr. Thomas Bohlen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101989 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmeranmeldungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060221</td>
<td>Theory of Seismic Waves</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060222</td>
<td>Exercises to Theory of Seismic Waves</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Bohlen, Hertweck</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.90 Teilleistung: Vermessungskunde für Bauingenieure und Geowissenschaftler (unbenotet) [T-BGU-101683]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Dr.-Ing. Norbert Rösch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-101342 - Allgemeine Geophysik

Voraussetzungen
keine
4.91 Teilleistung: Wissenschaftliches Schreiben [T-PHYS-110598]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Ellen Gottschämmmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-105111 - Experimentelle Geophysik I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>